We explore the dynamics and evolution of the Universe at early and late
times, focusing on both dark energy and extended gravity models and their
astrophysical and cosmological consequences. Modified theories of gravity not
only provide an alternative explanation for the recent expansion history of the
universe, but they also offer a paradigm fundamentally distinct from the
simplest dark energy models of cosmic acceleration. In this review, we perform
a detailed theoretical and phenomenological analysis of different modified
gravity models and investigate their consistency. We also consider the
cosmological implications of well motivated physical models of the early
universe with a particular emphasis on inflation and topological defects.
Astrophysical and cosmological tests over a wide range of scales, from the
solar system to the observable horizon, severely restrict the allowed models of
the Universe. Here, we review several observational probes -- including
gravitational lensing, galaxy clusters, cosmic microwave background temperature
and polarization, supernova and baryon acoustic oscillations measurements --
and their relevance in constraining our cosmological description of the
Universe.Comment: 94 pages, 14 figures. Review paper accepted for publication in a
Special Issue of Symmetry. "Symmetry: Feature Papers 2016". V2: Matches
published version, now 79 pages (new format