1,219 research outputs found
Results from the Palo Verde neutrino oscillation experiment
The ν̅e flux and spectrum have been measured at a distance of about 800 m from the reactors of the Palo Verde Nuclear Generating Station using a segmented Gd-loaded liquid scintillator detector. Correlated positron-neutron events from the reaction ν̅ep→e+n were recorded for a period of 200 d including 55 d with one of the three reactors off for refueling. Backgrounds were accounted for by making use of the reactor-on and reactor-off cycles, and also with a novel technique based on the difference between signal and background under reversal of the e+ and n portions of the events. A detailed description of the detector calibration, background subtraction, and data analysis is presented here. Results from the experiment show no evidence for neutrino oscillations. ν̅e→ν̅x oscillations were excluded at 90% C.L. for Δm2>1.12×10-3 eV2 for full mixing and sin22θ>0.21 for large Δm2. These results support the conclusion that the observed atmospheric neutrino oscillations do not involve νe
ANOMALOUS GAUGE BOSON INTERACTIONS
We discuss the direct measurement of the trilinear vector boson couplings in
present and future collider experiments. The major goals of such experiments
will be the confirmation of the Standard Model (SM) predictions and the search
for signals of new physics. We review our current theoretical understanding of
anomalous trilinear gauge boson self-interactions. If the energy scale of the
new physics is TeV, these low energy anomalous couplings are expected
to be no larger than . Constraints from high precision
measurements at LEP and low energy charged and neutral current processes are
critically reviewed.Comment: 53 pages with 17 embedded figures, LaTeX, uses axodraw.sty, figures
available on request. The complete paper, is available at
ftp://phenom.physics.wisc.edu/pub/preprints/1995/madph-95-871.ps.Z or
http://phenom.physics.wisc.edu/pub/preprints/1995/madph-95-871.ps.Z Summary
of the DPF Working Subgroup on Anomalous Gauge Boson Interactions of the DPF
Long Range Planning Stud
Constraining Radon Backgrounds in LZ
The LZ dark matter detector, like many other rare-event searches, will suffer
from backgrounds due to the radioactive decay of radon daughters. In order to
achieve its science goals, the concentration of radon within the xenon should
not exceed Bq/kg, or 20 mBq total within its 10 tonnes. The LZ
collaboration is in the midst of a program to screen all significant components
in contact with the xenon. The four institutions involved in this effort have
begun sharing two cross-calibration sources to ensure consistent measurement
results across multiple distinct devices. We present here five preliminary
screening results, some mitigation strategies that will reduce the amount of
radon produced by the most problematic components, and a summary of the current
estimate of radon emanation throughout the detector. This best estimate totals
mBq, sufficiently low to meet the detector's science goals.Comment: Low Radioactivity Techniques (LRT) 2017 Workshop Proceedings. 6
pages; 3 figure
Systematic Regge theory analysis of omega photoproduction
Systematic analysis of available data for -meson photoproduction is
given in frame of Regge theory. At photon energies above 20 GeV the
reaction is entirely dominated by Pomeron exchange.
However, it was found that Pomeron exchange model can not reproduce the
and data at high energies
simultaneously with the same set of parameters. The comparison between
and data indicates a large room for meson exchange contribution to
-meson photoproduction at low energies. It was found that at low
energies the dominant contribution comes from and -meson exchanges.
There is smooth transition between the meson exchange model at low energies and
Regge theory at high energies.Comment: 7 pages, 8 figures, revtex
Neutron production by cosmic-ray muons at shallow depth
The yield of neutrons produced by cosmic ray muons at a shallow depth of 32
meters of water equivalent has been measured. The Palo Verde neutrino detector,
containing 11.3 tons of Gd loaded liquid scintillator and 3.5 tons of acrylic
served as a target. The rate of one and two neutron captures was determined.
Modeling the neutron capture efficiency allowed us to deduce the total yield of
neutrons neutrons per muon
and g/cm. This yield is consistent with previous measurements at similar
depths.Comment: 12 pages, 3 figure
The Wave Function of 2S Radially Excited Vector Mesons from Data for Diffraction Slope
In the color dipole gBFKL dynamics we predict a strikingly different Q^2 and
energy dependence of the diffraction slope for the elastic production of ground
state V(1S) and radially excited V'(2S) light vector mesons. The color dipole
model predictions for the diffraction slope for \rho^0 and \phi^0 production
are in a good agreement with the data from the fixed target and collider HERA
experiments. We present how a different form of anomalous energy and Q^2
dependence of the diffraction slope for V'(2S) production leads to a different
position of the node in radial wave function and discuss a possibility how to
determine this position from the fixed target and HERA data.Comment: 20 pages and 6 figures. Title change
Final results from the Palo Verde Neutrino Oscillation Experiment
The analysis and results are presented from the complete data set recorded at
Palo Verde between September 1998 and July 2000. In the experiment, the
\nuebar interaction rate has been measured at a distance of 750 and 890 m
from the reactors of the Palo Verde Nuclear Generating Station for a total of
350 days, including 108 days with one of the three reactors off for refueling.
Backgrounds were determined by (a) the technique based on the difference
between signal and background under reversal of the positron and neutron parts
of the correlated event and (b) making use of the conventional reactor-on and
reactor-off cycles. There is no evidence for neutrino oscillation and the mode
\nuebar\to\bar\nu_x was excluded at 90% CL for \dm>1.1\times10^{-3} eV
at full mixing, and \sinq>0.17 at large \dm.Comment: 11 pages, 8 figure
Color Dipole Systematics of the Diffraction Slope in Diffractive Photo- and Electroproduction of Vector Mesons
We present the first evaluation of the color dipole diffraction slope from
the data on diffractive photo- and electroproduction of vector mesons. The
energy and dipole size dependence of the found dipole diffraction slope are
consistent with the color dipole gBFKL dynamics.Comment: 11 pages including 2 figure
Robust signatures of solar neutrino oscillation solutions
With the goal of identifying signatures that select specific neutrino
oscillation parameters, we test the robustness of global oscillation solutions
that fit all the available solar and reactor experimental data. We use three
global analysis strategies previously applied by different authors and also
determine the sensitivity of the oscillation solutions to the critical nuclear
fusion cross section, S_{17}(0), for the production of 8B. The favored
solutions are LMA, LOW, and VAC in order of g.o.f. The neutral current to
charged current ratio for SNO is predicted to be 3.5 +- 0.6 (1 sigma), which is
separated from the no-oscillation value of 1.0 by much more than the expected
experimental error. The predicted range of the day-night difference in charged
current rates is (8.2 +- 5.2)% and is strongly correlated with the day-night
effect for neutrino-electron scattering. A measurement by SNO of either a NC to
CC ratio > 3.3 or a day-night difference > 10%, would favor a small region of
the currently allowed LMA neutrino parameter space. The global oscillation
solutions predict a 7Be neutrino-electron scattering rate in BOREXINO and
KamLAND in the range 0.66 +- 0.04 of the BP00 standard solar model rate, a
prediction which can be used to test both the solar model and the neutrino
oscillation theory. Only the LOW solution predicts a large day-night effect(<
42%) in BOREXINO and KamLAND. For the KamLAND reactor experiment, the LMA
solution predicts 0.44 of the standard model rate; we evaluate 1 sigma and 3
sigma uncertainties and the first and second moments of the energy spectrum.Comment: Included predictions for KamLAND reactor experiment and updated to
include 1496 days of Super-Kamiokande observation
- …
