138 research outputs found

    A quantitative study of reproduction in some species of Ceriodaphnia (Crustacea: Cladocera)

    Get PDF
    The world distribution of species of the genus Ceriodaphnia has been compiled from the literature and is summarised. The nomenclature of C. cornuta is discussed.The present study is based on collections of C. pulchella, C. reticulata, C. megalops and C. laticaudata from the Long Water and the Wick Pond of Hampton Court, Middlesex during the period April 1963 - July 1964. The seasonal variations in the size of parthenogenetic females and of their reproductive capacity were investigated and are recorded. The relationships of egg numbers and egg volumes to body lengths and to the temperature and chlorophyll content of the water are analysed and discussed.The occurrence of sterile eggs in Ceriodaphnia pulchella and C. reticulata during 1963 is recorded. A few details of body size, egg number and egg size of an unidentified species from Malta are given and compared with those of the British species. The results of these recordings and analyses are discussed in relation to the principle of the ecological niche and the idea that size difference is a prerequisiteof cohabitation of species of the same genus. The results are also discussed in the light of those of other authors' work on other cladoceran species.<p

    Anomalous diffusion in viscosity landscapes

    Full text link
    Anomalous diffusion is predicted for Brownian particles in inhomogeneous viscosity landscapes by means of scaling arguments, which are substantiated through numerical simulations. Analytical solutions of the related Fokker-Planck equation in limiting cases confirm our results. For an ensemble of particles starting at a spatial minimum (maximum) of the viscous damping we find subdiffusive (superdiffusive) motion. Superdiffusion occurs also for a monotonically varying viscosity profile. We suggest different substances for related experimental investigations.Comment: 15 page

    Comprehensive identification of essential Staphylococcus aureus genes using Transposon-Mediated Differential Hybridisation (TMDH).

    Get PDF
    BACKGROUND: In recent years there has been an increasing problem with Staphylococcus aureus strains that are resistant to treatment with existing antibiotics. An important starting point for the development of new antimicrobial drugs is the identification of "essential" genes that are important for bacterial survival and growth. RESULTS: We have developed a robust microarray and PCR-based method, Transposon-Mediated Differential Hybridisation (TMDH), that uses novel bioinformatics to identify transposon inserts in genome-wide libraries. Following a microarray-based screen, genes lacking transposon inserts are re-tested using a PCR and sequencing-based approach. We carried out a TMDH analysis of the S. aureus genome using a large random mariner transposon library of around a million mutants, and identified a total of 351 S. aureus genes important for survival and growth in culture. A comparison with the essential gene list experimentally derived for Bacillus subtilis highlighted interesting differences in both pathways and individual genes. CONCLUSION: We have determined the first comprehensive list of S. aureus essential genes. This should act as a useful starting point for the identification of potential targets for novel antimicrobial compounds. The TMDH methodology we have developed is generic and could be applied to identify essential genes in other bacterial pathogens.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Condensational symbols in British press coverage of Boko Haram

    Get PDF
    This study of British press coverage of Boko Haram, a militant group in Nigeria, concentrates on condensational symbols in news reports of one of its major acts of terrorism, the bombing of the United Nations House in Abuja, the country’s capital city, in August 2011. The study examines the visibility of Boko Haram in British newspapers before and after the attack. It identifies the condensational symbols that dominated the coverage and how these provided a particular trajectory that could have shaped newspaper readers’ understanding of the event. The study argues that the symbolic terms that journalists used in their reports were not only easily identifiable but were specifically chosen to simplify a complex story for audiences that were perhaps uninformed about the group and its activities. The terms also reflect the repertoire of news frames that journalists mine to reconstruct reality for their audiences

    Herlyn-werner-wunderlich syndrome: MRI findings, radiological guide (two cases and literature review), and differential diagnosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Herlyn-Werner-Wunderlich (HWW) syndrome is a very rare congenital anomaly of the urogenital tract involving Müllerian ducts and Wolffian structures, and it is characterized by the triad of didelphys uterus, obstructed hemivagina and ipsilateral renal agenesis. It generally occurs at puberty and exhibits non-specific and variable symptoms with acute or pelvic pain shortly following menarche, causing a delay in the diagnosis. Moreover, the diagnosis is complicated by the infrequency of this syndrome, because Müllerian duct anomalies (MDA) are infrequently encountered in a routine clinical setting.</p> <p>Cases presentation</p> <p>two cases of HWW syndrome in adolescents and a differential diagnosis for one case of a different MDA, and the impact of magnetic resonance (MR) imaging technology to achieve the correct diagnosis.</p> <p>Conclusions</p> <p>MR imaging is a very suitable diagnostic tool in order to perform the correct diagnosis of HWW syndrome.</p

    Pivotal Role of Inosine Triphosphate Pyrophosphatase in Maintaining Genome Stability and the Prevention of Apoptosis in Human Cells

    Get PDF
    Pure nucleotide precursor pools are a prerequisite for high-fidelity DNA replication and the suppression of mutagenesis and carcinogenesis. ITPases are nucleoside triphosphate pyrophosphatases that clean the precursor pools of the non-canonical triphosphates of inosine and xanthine. The precise role of the human ITPase, encoded by the ITPA gene, is not clearly defined. ITPA is clinically important because a widespread polymorphism, 94C>A, leads to null ITPase activity in erythrocytes and is associated with an adverse reaction to thiopurine drugs. We studied the cellular function of ITPA in HeLa cells using the purine analog 6-N hydroxylaminopurine (HAP), whose triphosphate is also a substrate for ITPA. In this study, we demonstrate that ITPA knockdown sensitizes HeLa cells to HAP-induced DNA breaks and apoptosis. The HAP-induced DNA damage and cytotoxicity observed in ITPA knockdown cells are rescued by an overexpression of the yeast ITPase encoded by the HAM1 gene. We further show that ITPA knockdown results in elevated mutagenesis in response to HAP treatment. Our studies reveal the significance of ITPA in preventing base analog-induced apoptosis, DNA damage and mutagenesis in human cells. This implies that individuals with defective ITPase are predisposed to genome damage by impurities in nucleotide pools, which is drastically augmented by therapy with purine analogs. They are also at an elevated risk for degenerative diseases and cancer

    To know or not to know:should crimes regarding photographs of their child sexual abuse be disclosed to now-adult, unknowing victims?

    Get PDF
    This paper considers the unexplored question of whether unaware crime victims have rights or interests in knowing and not knowing information pertaining to the crime(s) committed against them. Our specific focus is on whether crimes regarding abusive images (AI) should be disclosed to now-adult victims of child sexual abuse who feature in them. Because these issues have not been addressed in the victimology or criminological literature, we utilise literature in another discipline - health care ethics and law - to inform our analysis. Through engaging with the debate on the right to know and not to know information concerning one’s genetic status, we develop a conceptualisation of the issues regarding unknowing AI victims. A rights-based conceptualisation proves to be largely inappropriate; we contend that, instead, it would be more productive to look to unknowing AI victims’ interests. We argue that the interests at stake are grounded in autonomy and/or spatial privacy, and that in order to find a way to resolve the disclosure dilemma, these interests must be considered alongside consequentialist concerns; disclosing information regarding AI could empower now-adult victims but could well cause them (further) harm. Finally, we consider the implications of our analysis for victimology

    A Network of Conserved Damage Survival Pathways Revealed by a Genomic RNAi Screen

    Get PDF
    Damage initiates a pleiotropic cellular response aimed at cellular survival when appropriate. To identify genes required for damage survival, we used a cell-based RNAi screen against the Drosophila genome and the alkylating agent methyl methanesulphonate (MMS). Similar studies performed in other model organisms report that damage response may involve pleiotropic cellular processes other than the central DNA repair components, yet an intuitive systems level view of the cellular components required for damage survival, their interrelationship, and contextual importance has been lacking. Further, by comparing data from different model organisms, identification of conserved and presumably core survival components should be forthcoming. We identified 307 genes, representing 13 signaling, metabolic, or enzymatic pathways, affecting cellular survival of MMS–induced damage. As expected, the majority of these pathways are involved in DNA repair; however, several pathways with more diverse biological functions were also identified, including the TOR pathway, transcription, translation, proteasome, glutathione synthesis, ATP synthesis, and Notch signaling, and these were equally important in damage survival. Comparison with genomic screen data from Saccharomyces cerevisiae revealed no overlap enrichment of individual genes between the species, but a conservation of the pathways. To demonstrate the functional conservation of pathways, five were tested in Drosophila and mouse cells, with each pathway responding to alkylation damage in both species. Using the protein interactome, a significant level of connectivity was observed between Drosophila MMS survival proteins, suggesting a higher order relationship. This connectivity was dramatically improved by incorporating the components of the 13 identified pathways within the network. Grouping proteins into “pathway nodes” qualitatively improved the interactome organization, revealing a highly organized “MMS survival network.” We conclude that identification of pathways can facilitate comparative biology analysis when direct gene/orthologue comparisons fail. A biologically intuitive, highly interconnected MMS survival network was revealed after we incorporated pathway data in our interactome analysis
    corecore