Anomalous diffusion is predicted for Brownian particles in inhomogeneous
viscosity landscapes by means of scaling arguments, which are substantiated
through numerical simulations. Analytical solutions of the related
Fokker-Planck equation in limiting cases confirm our results. For an ensemble
of particles starting at a spatial minimum (maximum) of the viscous damping we
find subdiffusive (superdiffusive) motion. Superdiffusion occurs also for a
monotonically varying viscosity profile. We suggest different substances for
related experimental investigations.Comment: 15 page