4,469 research outputs found
Many-body approach to infinite non-periodic systems: application to the surface of semi-infinite jellium
A method to implement the many-body Green function formalism in the GW
approximation for infinite non periodic systems is presented. It is suitable to
treat systems of known ``asymptotic'' properties which enter as boundary
conditions, while the effects of the lower symmetry are restricted to regions
of finite volume. For example, it can be applied to surfaces or localized
impurities. We illustrate the method with a study of the surface of
semi-infinite jellium. We report the dielectric function, the effective
potential and the electronic self-energy discussing the effects produced by the
screening and by the charge density profile near the surface.Comment: 11 pages, 4 figure
Ultrathin MoS2 membranes and their characterization through HRTEM and electron diffraction studies
Extended abstract of a paper presented at Microscopy and Microanalysis 2012 in Phoenix, Arizona, USA, July 29 - August 2, 201
Higgs ultraviolet softening
We analyze the leading effective operators which induce a quartic momentum
dependence in the Higgs propagator, for a linear and for a non-linear
realization of electroweak symmetry breaking. Their specific study is relevant
for the understanding of the ultraviolet sensitivity to new physics. Two
methods of analysis are applied, trading the Lagrangian coupling by: i) a
"ghost" scalar, after the Lee-Wick procedure; ii) other effective operators via
the equations of motion. The two paths are shown to lead to the same effective
Lagrangian at first order in the operator coefficients. It follows a
modification of the Higgs potential and of the fermionic couplings in the
linear realization, while in the non-linear one anomalous quartic gauge
couplings, Higgs-gauge couplings and gauge-fermion interactions are induced in
addition. Finally, all LHC Higgs and other data presently available are used to
constrain the operator coefficients; the future impact of data via off-shell Higgs exchange and of vector boson fusion data is
considered as well. For completeness, a summary of pure-gauge and gauge-Higgs
signals exclusive to non-linear dynamics at leading-order is included.Comment: 31 pages, 3 figures, 7 table
Disentangling a dynamical Higgs
The pattern of deviations from Standard Model predictions and couplings is
different for theories of new physics based on a non-linear realization of the
gauge symmetry breaking and those assuming a linear
realization. We clarify this issue in a model-independent way via its effective
Lagrangian formulation in the presence of a light Higgs particle, up to first
order in the expansions: dimension-six operators for the linear expansion and
four derivatives for the non-linear one. Complete sets of pure gauge and
gauge-Higgs operators are considered, implementing the renormalization
procedure and deriving the Feynman rules for the non-linear expansion. We
establish the theoretical relation and the differences in physics impact
between the two expansions. Promising discriminating signals include the
decorrelation in the non-linear case of signals correlated in the linear one:
some pure gauge versus gauge-Higgs couplings and also between couplings with
the same number of Higgs legs. Furthermore, anomalous signals expected at first
order in the non-linear realization may appear only at higher orders of the
linear one, and vice versa. We analyze in detail the impact of both type of
discriminating signals on LHC physics.Comment: Version published in JHE
On the ab initio calculation of CVV Auger spectra in closed-shell systems
We propose an ab initio method to evaluate the core-valence-valence (CVV)
Auger spectrum of systems with filled valence bands. The method is based on the
Cini-Sawatzky theory, and aims at estimating the parameters by first-principles
calculations in the framework of density-functional theory (DFT). Photoemission
energies and the interaction energy for the two holes in the final state are
evaluated by performing DFT simulations for the system with varied population
of electronic levels. Transition matrix elements are taken from atomic results.
The approach takes into account the non-sphericity of the density of states of
the emitting atom, spin-orbit interaction in core and valence, and non
quadratic terms in the total energy expansion with respect to fractional
occupation numbers. It is tested on two benchmark systems, Zn and Cu metals,
leading in both cases to L23M45M45 Auger peaks within 2 eV from the
experimental ones. Detailed analysis is presented on the relative weight of the
various contributions considered in our method, providing the basis for future
development. Especially problematic is the evaluation of the hole-hole
interaction for systems with broad valence bands: our method underestimates its
value in Cu, while we obtain excellent results for this quantity in Zn.Comment: 20 pages, 5 figures, 4 table
Nonresonant searches for axion-like particles in vector boson scattering processes at the LHC
We propose a new search for Axion-Like Particles (ALPs), targeting Vector
Boson Scattering (VBS) processes at the LHC. We consider nonresonant ALP-mediated
VBS, where the ALP participates as an off-shell mediator. This process occurs whenever
the ALP is too light to be produced resonantly, and it takes advantage of the derivative
nature of ALP interactions with the electroweak Standard Model bosons. We study the
production of ZZ, Zγ, W ±γ, W ±Z and W ±W ± pairs with large diboson invariant masses
in association with two jets. Working in a gauge-invariant framework, upper limits on
ALP couplings to electroweak bosons are obtained from a reinterpretation of Run 2 public
CMS VBS analyses. The constraints inferred on ALP couplings to ZZ, Zγ and W ±W ±
pairs are very competitive for ALP masses up to 100 GeV. They have the advantage of
being independent of the ALP coupling to gluons and of the ALP decay width. Simple
projections for LHC Run 3 and HL-LHC are also calculated, demonstrating the power of
future dedicated analyses at ATLAS and CMS
Highly integrated polymeric microliquid flow controller for droplet microfluidics
Microfluidic applications demand accurate control and measurement of small fluid flows and volumes, and the majority of approaches found in the literature involve materials and fabrication methods not suitable for a monolithic integration of different microcomponents needed to make a complex Lab-on-a-Chip (LoC) system. The present work leads to a design and manufacturing approach for problem-free monolithic integration of components on thermoplastics, allowing the production of excellent quality devices either as stand-alone components or combined in a complex structures. In particular, a polymeric liquid flow controlling system (LFCS) at microscale is presented, which is composed of a pneumatic microvalve and an on-chip microflow sensor. It enables flow regulation between 30 and 230Â ÎĽl/min with excellent reproducibility and accuracy (error lower than 5%). The device is made of a single Cyclic Olefin Polymer (COP) piece, where the channels and cavities are hot-embossed, sealed with a single COP membrane by solvent bonding and metalized, after sealing, to render a fully functional microfluidic control system that features on-chip flow sensing. In contrast with commercially available flow control systems, the device can be used for high-quality flow modulation in disposable LoC devices, since the microfluidic chip is low cost and replaceable from the external electronic and pneumatic actuators box. Functionality of the LFCS is tested by connecting it to a microfluidic droplet generator, rendering highly stable flow rates and allowing generation of monodisperse droplets over a wide range of flow rates. The results indicate the successful performance of the LFCS with significant improvements over existing LFCS devices, facing the possibility of using the system for biological applications such as generating distinct perfusion modes in cell culture, novel digital microfluidics. Moreover, the integration capabilities and the reproducible fabrication method enable straightforward transition from prototype to product in a way that is lean, cost-effective and with reduced risk
The complete HEFT Lagrangian after the LHC Run I
The complete effective chiral Lagrangian for a dynamical Higgs is presented and constrained by means of a global analysis including electroweak precision data together with Higgs and triple gauge-boson coupling data from the LHC Run I. The operators’ basis up to next-to-leading order in the expansion consists of 148 (188 considering righthanded neutrinos) flavour universal terms and it is presented here making explicit the custodial nature of the operators. This effective Lagrangian provides the most general description of the physical Higgs couplings once the electroweak symmetry is assumed, and it allows for deviations from the SU (2)L doublet nature of the Standard Model Higgs. The comparison with the effective linear Lagrangian constructed with an exact SU (2)L doublet Higgs and considering operators with at most canonical dimension six is presented. A promising strategy to disentangle the two descriptions consists in analysing (i) anomalous signals present only in the chiral Lagrangian and not expected in the linear one, that are potentially relevant for LHC searches, and (ii) decorrelation effects between observables that are predicted to be correlated in the linear case and not in the chiral one. The global analysis presented here, which includes several kinematic distributions, is crucial for reducing the allowed parameter space and for controlling the correlations between parameters. This improves previous studies aimed at investigating the Higgs Nature and the origin of the electroweak symmetry breakingI.B. research was supported by an ESR contract of the EU network FP7 ITN INVISIBLES (Marie Curie Actions, PITN-GA-2011-289442).M.C.GG is supported by USA-NSF grant PHY-13-16617, by grants 2014- SGR-104 and by FPA2013-46570 and consolider-ingenio 2010 program CSD-2008-0037. L.M. acknowledge partial support of CiCYT through the project FPA2012-31880 and of the Spanish MINECO’s “Centro de Excelencia Severo Ochoa” Programme under grant SEV- 2012-0249. M.C.G-G and L.M. acknowledge partial support by FP7 ITN INVISIBLES (PITN-GA-2011-289442), FP10 ITN ELUSIVES (H2020-MSCA-ITN-2015-674896) and INVISIBLES-PLUS (H2020- MSCA-RISE-2015-690575
Unitarity constraints on ALP interactions
We derive partial-wave unitarity constraints on gauge-invariant interactions
of an Axion-Like Particle (ALP) up to dimension-6 from all allowed
scattering processes in the limit of large center-of-mass energy. We find that
the strongest bounds stem from scattering amplitudes with one external ALP and
only apply to the coupling to a pair of gauge bosons. Couplings to
and gauge bosons and to fermions are more loosely
constrained.Comment: 11 pages, 1 figure, 5 table
- …