3,273 research outputs found
Development and application of a sensitive, high precision weighing lysimeter for use in greenhouses
A high precision weighing lysimeter for measuring evapotranspiration in greenhouses was developed. The instrument has a measurement of sensitivity of one part in 106, that is one order of magnitude better than any other so far described in the literature. With it, evaporation rates in a greenhouse, even at night, can be measured on a one minute time scale. Development and construction of the instrument are described and measurements of the transpiration of a tomato crop in a greenhouse are used to demonstrate its capabilities
Solving the stationary Liouville equation via a boundary element method
Intensity distributions of linear wave fields are, in the high frequency
limit, often approximated in terms of flow or transport equations in phase
space. Common techniques for solving the flow equations for both time dependent
and stationary problems are ray tracing or level set methods. In the context of
predicting the vibro-acoustic response of complex engineering structures,
reduced ray tracing methods such as Statistical Energy Analysis or variants
thereof have found widespread applications. Starting directly from the
stationary Liouville equation, we develop a boundary element method for solving
the transport equations for complex multi-component structures. The method,
which is an improved version of the Dynamical Energy Analysis technique
introduced recently by the authors, interpolates between standard statistical
energy analysis and full ray tracing, containing both of these methods as
limiting cases. We demonstrate that the method can be used to efficiently deal
with complex large scale problems giving good approximations of the energy
distribution when compared to exact solutions of the underlying wave equation
Expansion and Hadronization of a Chirally Symmetric Quark--Meson Plasma
Using a chirally symmetric Lagrangian, which contains quarks as elementary
degrees of freedom and mesons as bound states, we investigate the expansion and
hadronization of a fireball, which initially contains only quarks and produces
mesons by collisions. For this model, we study the time scales of expansion and
thermal and chemical equilibration. We find that the expansion progresses
relatively fast, leaving not necessarily enough time to establish thermal and
chemical equilibrium. Mesons are produced in the bulk of the fireball rather
than at a surface, at a temperature below the Mott temperature. Initial density
fluctuations become amplified during the expansion. These observations
challenge the applicability of hydrodynamical approaches to the expansion of a
quark-gluon plasma
Correcting the polarization effect in low frequency Dielectric Spectroscopy
We demonstrate a simple and robust methodology for measuring and analyzing
the polarization impedance appearing at interface between electrodes and ionic
solutions, in the frequency range from 1 to Hz. The method assumes no
particular behavior of the electrode polarization impedance and it only makes
use of the fact that the polarization effect dies out with frequency. The
method allows a direct and un-biased measurement of the polarization impedance,
whose behavior with the applied voltages and ionic concentration is
methodically investigated. Furthermore, based on the previous findings, we
propose a protocol for correcting the polarization effect in low frequency
Dielectric Spectroscopy measurements of colloids. This could potentially lead
to the quantitative resolution of the -dispersion regime of live cells
in suspension
Modeling and predicting the shape of the far-infrared to submillimeter emission in ultra-compact HII regions and cold clumps
Dust properties are very likely affected by the environment in which dust
grains evolve. For instance, some analyses of cold clumps (7 K- 17 K) indicate
that the aggregation process is favored in dense environments. However,
studying warm (30 K-40 K) dust emission at long wavelength (300
m) has been limited because it is difficult to combine far
infared-to-millimeter (FIR-to-mm) spectral coverage and high angular resolution
for observations of warm dust grains. Using Herschel data from 70 to 500
m, which are part of the Herschel infrared Galactic (Hi-GAL) survey
combined with 1.1 mm data from the Bolocam Galactic Plane Survey (BGPS), we
compared emission in two types of environments: ultra-compact HII (UCHII)
regions, and cold molecular clumps (denoted as cold clumps). With this
comparison we tested dust emission models in the FIR-to-mm domain that
reproduce emission in the diffuse medium, in these two environments (UCHII
regions and cold clumps). We also investigated their ability to predict the
dust emission in our Galaxy. We determined the emission spectra in twelve UCHII
regions and twelve cold clumps, and derived the dust temperature (T) using the
recent two-level system (TLS) model with three sets of parameters and the
so-called T- (temperature-dust emissvity index) phenomenological models,
with set to 1.5, 2 and 2.5. We tested the applicability of the TLS
model in warm regions for the first time. This analysis indicates distinct
trends in the dust emission between cold and warm environments that are visible
through changes in the dust emissivity index. However, with the use of standard
parameters, the TLS model is able to reproduce the spectral behavior observed
in cold and warm regions, from the change of the dust temperature alone,
whereas a T- model requires to be known.Comment: Accepted for publication in A&A. 19 pages, 8 figures, 7 table
Submillimeter to centimeter excess emission from the Magellanic Clouds. II. On the nature of the excess
Dust emission at submm to cm wavelengths is often simply the Rayleigh-Jeans
tail of dust particles at thermal equilibrium and is used as a cold mass tracer
in various environments including nearby galaxies. However, well-sampled
spectral energy distributions of the nearby, star-forming Magellanic Clouds
have a pronounced (sub-)millimeter excess (Israel et al., 2010). This study
attempts to confirm the existence of such a millimeter excess above expected
dust, free-free and synchrotron emission and to explore different possibilities
for its origin. We model NIR to radio spectral energy distributions of the
Magellanic Clouds with dust, free-free and synchrotron emission. A millimeter
excess emission is confirmed above these components and its spectral shape and
intensity are analysed in light of different scenarios: very cold dust, Cosmic
Microwave Background (CMB) fluctuations, a change of the dust spectral index
and spinning dust emission. We show that very cold dust or CMB fluctuations are
very unlikely explanations for the observed excess in these two galaxies. The
excess in the LMC can be satisfactorily explained either by a change of the
spectral index due to intrinsic properties of amorphous grains, or by spinning
dust emission. In the SMC however, due to the importance of the excess, the
dust grain model including TLS/DCD effects cannot reproduce the observed
emission in a simple way. A possible solution was achieved with spinning dust
emission, but many assumptions on the physical state of the interstellar medium
had to be made. Further studies, using higher resolution data from Planck and
Herschel, are needed to probe the origin of this observed submm-cm excess more
definitely. Our study shows that the different possible origins will be best
distinguished where the excess is the highest, as is the case in the SMC.Comment: 7 pages, 6 figures; accepted in A&
Motivational interviewing and problem solving treatment to reduce type 2 diabetes and cardiovascular disease risk in real life: a randomized controlled trial
BACKGROUND: Intensive lifestyle interventions in well-controlled settings are effective in lowering the risk of chronic diseases such as type 2 diabetes (T2DM) and cardiovascular diseases (CVD), but there are still no effective lifestyle interventions for everyday practice. In the Hoorn Prevention Study we aimed to assess the effectiveness of a primary care based lifestyle intervention to reduce the estimated risk of developing T2DM and for CVD mortality, and to motivate changes in lifestyle behaviors. METHODS: The Hoorn Prevention Study is a parallel group randomized controlled trial, implemented in the region of West-Friesland, the Netherlands. 622 adults with ≥10% estimated risk of T2DM and/or CVD mortality were randomly assigned and monitored over a period of 12 months. The intervention group (n=314) received a theory-based lifestyle intervention based on an innovative combination of motivational interviewing and problem solving treatment, provided by trained practice nurses in 12 general practices. The control group (n=308) received existing health brochures. Primary outcomes was the estimated diabetes risk according to the formula of the Atherosclerosis Risk In Communities (ARIC) Study, and the estimated risk for CVD mortality according to the Systematic COronary Risk Evaluation (SCORE) formula. Secondary outcomes included lifestyle behavior (diet, physical activity and smoking). The research assistants, the principal investigator and the general practitioners were blinded to group assignment. Linear and logistic regression analysis was applied to examine the between-group differences in each outcome measure, adjusted for baseline values. RESULTS: 536 (86.2%) of the 622 participants (age 43.5 years) completed the 6-month follow-up, and 502 (81.2%) completed the 12-month follow-up. The mean baseline T2DM risk was 18.9% (SD 8.2) and the mean CVD mortality risk was 3.8% (SD 3.0). The intervention group participated in a median of 2 sessions. Intention-to-treat analyses showed no significant differences in outcomes between the two groups at 6 or 12-months follow-up. CONCLUSIONS: The lifestyle intervention was not more effective than health brochures in reducing risk scores for T2DM and CVD or improving lifestyle behavior in an at-risk population. TRIAL REGISTRATION: Current Controlled Trials: ISRCTN59358434
Diffuse far-infrared and ultraviolet emission in the NGC4435/4438 system: tidal stream or Galactic cirrus?
We report the discovery of diffuse far-infrared and far-ultraviolet emission
projected near the interacting pair NGC4435/4438, in the Virgo cluster. This
feature spatially coincides with a well known low surface-brightness optical
plume, usually interpreted as tidal debris. If extragalactic, this stream would
represent not only one of the clearest examples of intracluster dust, but also
a rare case of intracluster molecular hydrogen and large-scale intracluster
star formation. However, the ultraviolet, far-infrared, HI and CO emission as
well as the dynamics of this feature are extremely unusual for tidal streams
but are typical of Galactic cirrus clouds. In support to the cirrus scenario,
we show that a strong spatial correlation between far-infrared and
far-ultraviolet cirrus emission is observed across the center of the Virgo
cluster, over a scale of several degrees. This study demonstrates how dramatic
Galactic cirrus contamination can be, even at optical and ultraviolet
wavelengths and at high galactic latitudes. If ignored, the presence of diffuse
light scattered by Galactic dust clouds could significantly bias our
interpretation of low surface-brightness features and diffuse light observed
around galaxies and in clusters of galaxies.Comment: 6 pages, 4 figures. Accepted for publication in MNRAS Letter
- …
