1,341 research outputs found

    Neutron star masses from hydrodynamical effects in obscured sgHMXBs

    Full text link
    A population of obscured supergiant High Mass X-ray Binaries (sgHMXBs) has been discovered by INTEGRAL. X-ray wind tomography of IGR J17252-3616 inferred a slow wind velocity to account for the enhanced obscuration. The main goal of this study is to understand under which conditions high obscuration could occur. We have used an hydrodynamical code to simulate the flow of the stellar wind around the neutron star. A grid of simulations was used to study the dependency of the absorbing column density and of the X-ray light-curves on the model parameters. A comparison between the simulation results and the observations of IGR J17252-3616 provides an estimate on these parameters. We have constrained the wind terminal velocity to 500-600 km/s and the neutron star mass to 1.75-2.15 solar masses. We have confirmed that the initial hypothesis of a slow wind velocity with a moderate mass loss rate is valid. The mass of the neutron star can be constrained by studying its impact on the accretion flow.Comment: A&A in pres

    A reddening-free method to estimate the 56^{56}Ni mass of Type Ia supernovae

    Full text link
    The increase in the number of Type Ia supernovae (SNe\,Ia) has demonstrated that the population shows larger diversity than has been assumed in the past. The reasons (e.g. parent population, explosion mechanism) for this diversity remain largely unknown. We have investigated a sample of SNe\,Ia near-infrared light curves and have correlated the phase of the second maximum with the bolometric peak luminosity. The peak bolometric luminosity is related to the time of the second maximum (relative to the {\it B} light curve maximum) as follows : Lmax(1043ergs−1)=(0.039±0.004)×t2(J)(days)+(0.013±0.106)L_{max}(10^{43} erg s^{-1}) = (0.039 \pm 0.004) \times t_2(J)(days) + (0.013 \pm 0.106). 56^{56}Ni masses can be derived from the peak luminosity based on Arnett's rule, which states that the luminosity at maximum is equal to instantaneous energy generated by the nickel decay. We check this assumption against recent radiative-transfer calculations of Chandrasekhar-mass delayed detonation models and find this assumption is valid to within 10\% in recent radiative-transfer calculations of Chandrasekhar-mass delayed detonation models. The LmaxL_{max} vs. t2t_2 relation is applied to a sample of 40 additional SNe\,Ia with significant reddening (E(B−V)>E(B-V) > 0.1 mag) and a reddening-free bolometric luminosity function of SNe~Ia is established. The method is tested with the 56^{56}Ni mass measurement from the direct observation of γ−\gamma-rays in the heavily absorbed SN 2014J and found to be fully consistent. Super-Chandrasekhar-mass explosions, in particular SN\,2007if, do not follow the relations between peak luminosity and second IR maximum. This may point to an additional energy source contributing at maximum light. The luminosity function of SNe\,Ia is constructed and is shown to be asymmetric with a tail of low-luminosity objects and a rather sharp high-luminosity cutoff, although it might be influenced by selection effects.Comment: 9 pages, 3 figures, Accepted to A&

    Towards Efficient Verification of Population Protocols

    Full text link
    Population protocols are a well established model of computation by anonymous, identical finite state agents. A protocol is well-specified if from every initial configuration, all fair executions reach a common consensus. The central verification question for population protocols is the well-specification problem: deciding if a given protocol is well-specified. Esparza et al. have recently shown that this problem is decidable, but with very high complexity: it is at least as hard as the Petri net reachability problem, which is EXPSPACE-hard, and for which only algorithms of non-primitive recursive complexity are currently known. In this paper we introduce the class WS3 of well-specified strongly-silent protocols and we prove that it is suitable for automatic verification. More precisely, we show that WS3 has the same computational power as general well-specified protocols, and captures standard protocols from the literature. Moreover, we show that the membership problem for WS3 reduces to solving boolean combinations of linear constraints over N. This allowed us to develop the first software able to automatically prove well-specification for all of the infinitely many possible inputs.Comment: 29 pages, 1 figur

    Ionization avalanching in clusters ignited by extreme-ultraviolet driven seed electrons

    Get PDF
    We study the ionization dynamics of Ar clusters exposed to ultrashort near-infrared (NIR) laser pulses for intensities well below the threshold at which tunnel ionization ignites nanoplasma formation. We find that the emission of highly charged ions up to Ar8+^{8+} can be switched on with unit contrast by generating only a few seed electrons with an ultrashort extreme ultraviolet (XUV) pulse prior to the NIR field. Molecular dynamics simulations can explain the experimental observations and predict a generic scenario where efficient heating via inverse bremsstrahlung and NIR avalanching are followed by resonant collective nanoplasma heating. The temporally and spatially well-controlled injection of the XUV seed electrons opens new routes for controlling avalanching and heating phenomena in nanostructures and solids, with implications for both fundamental and applied laser-matter science.Comment: 5 pages, 4 figure

    Turbulent Magnetic Field Amplification from Spiral SASI Modes: Implications for Core-Collapse Supernovae and Proto-Neutron Star Magnetization

    Full text link
    We extend our investigation of magnetic field evolution in three-dimensional flows driven by the stationary accretion shock instability (SASI) with a suite of higher-resolution idealized models of the post-bounce core-collapse supernova environment. Our magnetohydrodynamic simulations vary in initial magnetic field strength, rotation rate, and grid resolution. Vigorous SASI-driven turbulence inside the shock amplifies magnetic fields exponentially; but while the amplified fields reduce the kinetic energy of small-scale flows, they do not seem to affect the global shock dynamics. The growth rate and final magnitude of the magnetic energy are very sensitive to grid resolution, and both are underestimated by the simulations. Nevertheless our simulations suggest that neutron star magnetic fields exceeding 101410^{14} G can result from dynamics driven by the SASI, \emph{even for non-rotating progenitors}.Comment: 28 pages, 17 figures, accepted for publication in the Ap

    Spherically symmetric relativistic MHD simulations of pulsar wind nebulae in supernova remnants

    Get PDF
    Pulsars, formed during supernova explosions, are known to be sources of relativistic magnetized winds whose interaction with the expanding supernova remnants (SNRs) gives rise to a pulsar wind nebula (PWN). We present spherically symmetric relativistic magnetohydrodynamics (RMHD) simulations of the interaction of a pulsar wind with the surrounding SNR, both in particle and magnetically dominated regimes. As shown by previous simulations, the evolution can be divided in three phases: free expansion, a transient phase characterized by the compression and reverberation of the reverse shock, and a final Sedov expansion. The evolution of the contact discontinuity between the PWN and the SNR (and consequently of the SNR itself) is almost independent of the magnetization of the nebula as long as the total (magnetic plus particle) energy is the same. However, a different behaviour of the PWN internal structure is observable during the compression-reverberation phase, depending on the degree of magnetization=2E The simulations were performed using the third order conservative scheme by Del Zanna et al. (2003).Comment: 11 pages, Latex, 22 Encapsulated PostScript figures, accepted f or publication on A&

    A physical interpretation of the jet-like X-ray emission from supernova remnant W49B

    Get PDF
    In the framework of the study of supernova remnants and their complex interaction with the interstellar medium and the circumstellar material, we focus on the galactic supernova remnant W49B. Its morphology exhibits an X-ray bright elongated nebula, terminated on its eastern end by a sharp perpendicular structure aligned with the radio shell. The X-ray spectrum of W49B is characterized by strong K emission lines from Si, S, Ar, Ca, and Fe. There is a variation of the temperature in the remnant with the highest temperature found in the eastern side and the lowest one in the western side. The analysis of the recent observations of W49B indicates that the remnant may be the result of an asymmetric bipolar explosion where the ejecta are collimated along a jet-like structure and the eastern jet is hotter and more Fe-rich than the western one. Another possible scenario associates the X-ray emission with a spherical explosion where parts of the ejecta are interacting with a dense belt of ambient material. To overcome this ambiguity we present new results of the analysis of an XMM-Newton observation and we perform estimates of the mass and energy of the remnant. We conclude that the scenario of an anisotropic jet-like explosion explains quite naturally our observation results, but the association of W49B with a hypernova and a gamma-ray burst, although still possible, is not directly supported by any evidence.Comment: 7 pages, 5 figures, accepted for publication in Advances in Space Researc
    • …
    corecore