10,765 research outputs found

    A General Formula for Black Hole Gravitational Wave Kicks

    Get PDF
    Although the gravitational wave kick velocity in the orbital plane of coalescing black holes has been understood for some time, apparently conflicting formulae have been proposed for the dominant out-of-plane kick, each a good fit to different data sets. This is important to resolve because it is only the out-of-plane kicks that can reach more than 500 km/s and can thus eject merged remnants from galaxies. Using a different ansatz for the out-of-plane kick, we show that we can fit almost all existing data to better than 5 %. This is good enough for any astrophysical calculation, and shows that the previous apparent conflict was only because the two data sets explored different aspects of the kick parameter space.Comment: 14 pages

    Modeling kicks from the merger of generic black-hole binaries

    Get PDF
    Recent numerical relativistic results demonstrate that the merger of comparable-mass spinning black holes has a maximum ``recoil kick'' of up to \sim 4000 \kms. However the scaling of these recoil velocities with mass ratio is poorly understood. We present new runs showing that the maximum possible kick perpendicular to the orbital plane does not scale as η2\sim\eta^2 (where η\eta is the symmetric mass ratio), as previously proposed, but is more consistent with η3\sim\eta^3, at least for systems with low orbital precession. We discuss the effect of this dependence on galactic ejection scenarios and retention of intermediate-mass black holes in globular clusters.Comment: 5 pages, 1 figure, 3 tables. Version published in Astrophys. J. Let

    Atom chips on direct bonded copper substrates

    Full text link
    We present the use of direct bonded copper (DBC) for the straightforward fabrication of high power atom chips. Atom chips using DBC have several benefits: excellent copper/substrate adhesion, high purity, thick (> 100 microns) copper layers, high substrate thermal conductivity, high aspect ratio wires, the potential for rapid (< 8 hr) fabrication, and three dimensional atom chip structures. Two mask options for DBC atom chip fabrication are presented, as well as two methods for etching wire patterns into the copper layer. The wire aspect ratio that optimizes the magnetic field gradient as a function of power dissipation is determined to be 0.84:1 (height:width). The optimal wire thickness as a function of magnetic trapping height is also determined. A test chip, able to support 100 A of current for 2 s without failing, is used to determine the thermal impedance of the DBC. An assembly using two DBC atom chips to provide magnetic confinement is also shown.Comment: 8 pages, 5 figure

    Adjustable microchip ring trap for cold atoms and molecules

    Full text link
    We describe the design and function of a circular magnetic waveguide produced from wires on a microchip for atom interferometry using deBroglie waves. The guide is a two-dimensional magnetic minimum for trapping weak-field seeking states of atoms or molecules with a magnetic dipole moment. The design consists of seven circular wires sharing a common radius. We describe the design, the time-dependent currents of the wires and show that it is possible to form a circular waveguide with adjustable height and gradient while minimizing perturbation resulting from leads or wire crossings. This maximal area geometry is suited for rotation sensing with atom interferometry via the Sagnac effect using either cold atoms, molecules and Bose-condensed systems

    Vector and Axial Form Factors Applied to Neutrino Quasielastic Scattering

    Full text link
    We calculate the quasielastic cross sections for neutrino scattering on nucleons using up to date fits to the nucleon elastic electromagnetic form factors GEp, GEn, GMp, GMn, and weak form factors. We show the extraction of Fa for neutrino experiments. We show how well \minerva, a new approved experiment at FNAL, can measure Fa. We show the that Fa has a different contribution to the anti-neutrino cross section, and how the anti-neutrino data can be used to check Fa extracted from neutrino scattering.Comment: Presented by Howard Budd at NuInt04, Mar. 2004, Laboratori Nazionali del Gran Sasso - INFN - Assergi, Ital

    Novel Applications of Carbon Isotopes in Atmospheric CO2: What Can Atmospheric Measurements Teach Us About Processes in the Biosphere?

    Get PDF
    Conventionally, measurements of carbon isotopes in atmospheric CO2 (δ13CO2) have been used to partition fluxes between terrestrial and ocean carbon pools. However, novel analytical approaches combined with an increase in the spatial extent and frequency of δ13CO2 measurements allow us to conduct a global analysis of δ13CO2 variability to infer the isotopic composition of source CO2 to the atmosphere (δs). This global analysis yields coherent seasonal patterns of isotopic enrichment. Our results indicate that seasonal values of δs are more highly correlated with vapor pressure deficit (r = 0.404) than relative humidity (r = 0.149). We then evaluate two widely used stomatal conductance models and determine that the Leuning Model, which is primarily driven by vapor pressure deficit is more effective globally at predicting δs (RMSE = 1.6‰) than the Ball-Woodrow-Berry model, which is driven by relative humidity (RMSE = 2.7‰). Thus stomatal conductance on a global scale may be more sensitive to changes in vapor pressure deficit than relative humidity. This approach highlights a new application of using δ13CO2 measurements to validate global models

    Splinting Method for Preventing Thermal Injuries in Patients with Malleolar Fractures of the Ankle after Operative Treatment Performed Under Regional Anesthesia

    Get PDF
    After performing open reduction and internal fixation (ORIF) for treating malleolar fractures of the ankle, surgeons typically use plaster splints during postoperative recovery of patients. Use of regional anesthesia during ORIF has been noted as a risk factor for burns in patients using plaster splints, possibly owing to inability to feel pain after undergoing regional block. We describe a successful postoperative splinting technique used for preventing thermal injuries in this patient population. We reviewed medical records of patients between 2011 and 2013 at our institution with malleolar ankle fractures who had underwent ORIF under general anesthesia, peripheral nerve block, or a combination of both. Patients without follow-up were excluded; therefore, 154 were included. No thermal injuries were noted, operative reduction of the fracture was maintained, and the cost of each splint was $13.19. Use of the current technique in applying plaster splints may help effectively prevent postoperative thermal injuries
    corecore