We present the use of direct bonded copper (DBC) for the straightforward
fabrication of high power atom chips. Atom chips using DBC have several
benefits: excellent copper/substrate adhesion, high purity, thick (> 100
microns) copper layers, high substrate thermal conductivity, high aspect ratio
wires, the potential for rapid (< 8 hr) fabrication, and three dimensional atom
chip structures. Two mask options for DBC atom chip fabrication are presented,
as well as two methods for etching wire patterns into the copper layer. The
wire aspect ratio that optimizes the magnetic field gradient as a function of
power dissipation is determined to be 0.84:1 (height:width). The optimal wire
thickness as a function of magnetic trapping height is also determined. A test
chip, able to support 100 A of current for 2 s without failing, is used to
determine the thermal impedance of the DBC. An assembly using two DBC atom
chips to provide magnetic confinement is also shown.Comment: 8 pages, 5 figure