Recent numerical relativistic results demonstrate that the merger of
comparable-mass spinning black holes has a maximum ``recoil kick'' of up to
\sim 4000 \kms. However the scaling of these recoil velocities with mass
ratio is poorly understood. We present new runs showing that the maximum
possible kick perpendicular to the orbital plane does not scale as ∼η2
(where η is the symmetric mass ratio), as previously proposed, but is more
consistent with ∼η3, at least for systems with low orbital precession.
We discuss the effect of this dependence on galactic ejection scenarios and
retention of intermediate-mass black holes in globular clusters.Comment: 5 pages, 1 figure, 3 tables. Version published in Astrophys. J. Let