375 research outputs found

    Atmospheric chemistry of gas-phase polycyclic aromatic hydrocarbons: formation of atmospheric mutagens.

    Get PDF
    The atmospheric chemistry of the 2- to 4-ring polycyclic aromatic hydrocarbons (PAH), which exist mainly in the gas phase in the atmosphere, is discussed. The dominant loss process for the gas-phase PAH is by reaction with the hydroxyl radical, resulting in calculated lifetimes in the atmosphere of generally less than one day. The hydroxyl (OH) radical-initiated reactions and nitrate (NO3) radical-initiated reactions often lead to the formation of mutagenic nitro-PAH and other nitropolycyclic aromatic compounds, including nitrodibenzopyranones. These atmospheric reactions have a significant effect on ambient mutagenic activity, indicating that health risk assessments of combustion emissions should include atmospheric transformation products

    Analysis of Crystal Lattice Deformation by Ion Channeling

    Get PDF
    A model of dislocations has been developed for the use in Monte Carlo simulations of ion channeling spectra obtained for defected crystals. High resolution transmission electron microscopy micrographs show that the dominant type of defects in the majority of ion irradiated crystals are dislocations. The RBS/channeling spectrum is then composed of two components: one is due to direct scattering on randomly displaced atoms and the second one is related to beam defocussing on dislocations, which produce predominantly crystal lattice distortions, i.e. bent channels. In order to provide a correct analysis of backscattering spectra for the crystals containing dislocations we have modied the existing Monte Carlo simulation code McChasy. A new version of the code has been developed by implementing dislocations on the basis of the PeierlsNabarro model. Parameters of the model have been determined from the high resolution transmission electron microscopy data. The newly developed method has been used to study the Ar-ion bombarded SrTiO3 samples. The best t to the Rutherford backscattering/channeling spectra has been obtained by optimizing the linear combination of two kinds of defects: displaced atoms and bent channels. The great virtue of the Monte Carlo simulation is that unlike a traditional dechanneling analysis it allows quantitative analysis of crystals containing a mixture of dierent types of defects

    Functional divergence in the role of N-linked glycosylation in smoothened signaling

    Get PDF
    The G protein-coupled receptor (GPCR) Smoothened (Smo) is the requisite signal transducer of the evolutionarily conserved Hedgehog (Hh) pathway. Although aspects of Smo signaling are conserved from Drosophila to vertebrates, significant differences have evolved. These include changes in its active sub-cellular localization, and the ability of vertebrate Smo to induce distinct G protein-dependent and independent signals in response to ligand. Whereas the canonical Smo signal to Gli transcriptional effectors occurs in a G protein-independent manner, its non-canonical signal employs Gαi. Whether vertebrate Smo can selectively bias its signal between these routes is not yet known. N-linked glycosylation is a post-translational modification that can influence GPCR trafficking, ligand responsiveness and signal output. Smo proteins in Drosophila and vertebrate systems harbor N-linked glycans, but their role in Smo signaling has not been established. Herein, we present a comprehensive analysis of Drosophila and murine Smo glycosylation that supports a functional divergence in the contribution of N-linked glycans to signaling. Of the seven predicted glycan acceptor sites in Drosophila Smo, one is essential. Loss of N-glycosylation at this site disrupted Smo trafficking and attenuated its signaling capability. In stark contrast, we found that all four predicted N-glycosylation sites on murine Smo were dispensable for proper trafficking, agonist binding and canonical signal induction. However, the under-glycosylated protein was compromised in its ability to induce a non-canonical signal through Gαi, providing for the first time evidence that Smo can bias its signal and that a post-translational modification can impact this process. As such, we postulate a profound shift in N-glycan function from affecting Smo ER exit in flies to influencing its signal output in mice

    Dynamics of live oil droplets and natural gas bubbles in deep water

    Get PDF
    Explaining the dynamics of gas-saturated live petroleum in deep water remains a challenge. Recently, Pesch et al. (Environ. Eng. Sci. 2018, 35, 289−299) reported laboratory experiments on methane-saturated oil droplets under emulated deep-water conditions, providing an opportunity to elucidate the underlying dynamical processes. We explain these observations with the Texas A&M Oil spill/Outfall Calculator (TAMOC), which models the pressure-, temperature-, and composition-dependent interactions between: oil-gas phase transfer; aqueous dissolution; and densities and volumes of liquid oil droplets, gas bubbles, and two-phase droplet-bubble pairs. TAMOC reveals that aqueous dissolution removed >95% of the methane from ~3.5-mm live oil droplets within 14.5 min, prior to gas bubble formation, during the experiments of Pesch et al. Additional simulations indicate that aqueous dissolution, fluid density changes, and gas-oil phase transitions (ebullition, condensation) may all contribute to the fates of live oil and gas in deep water, depending on the release conditions. Illustrative model scenarios suggest that 5-mm diameter gas bubbles released at <470 m water depth can transport methane, ethane, and propane to the water surface. Ethane and propane can reach the water surface from much deeper releases of 5-mm diameter live oil droplets, during which ebullition occurs at water depths of <70 m

    Locomotion disorders and skin and claw lesions in gestating sows housed in dynamic versus static groups

    Get PDF
    Lameness and lesions to the skin and claws of sows in group housing are commonly occurring indicators of reduced welfare. Typically, these problems are more common in group housing than in individual housing systems. Group management type (dynamic versus static) and stage of gestation influence the behavior of the animals, which in turn influences the occurrence of these problems. The present study compared prevalence, incidence and mean scores of lameness and skin and claw lesions in static versus dynamic group housed sows at different stages of gestation during three consecutive reproductive cycles. A total of 10 Belgian sow herds were monitored; 5 in which dynamic groups and 5 in which static groups were utilized. All sows were visually assessed for lameness and skin lesions three times per cycle and the claws of the hind limbs were assessed once per cycle. Lameness and claw lesions were assessed using visual analogue scales. Static groups, in comparison with dynamic groups, demonstrated lower lameness scores (P<0.05) and decreased skin lesion prevalence (24.9 vs. 47.3%, P<0.05) at the end of gestation. There was no difference between treatment group regarding claw lesion prevalence with 75.5% of sows demonstrating claw lesions regardless of group management. Prevalences of lameness (22.4 vs. 8.9%, P<0.05) and skin lesions (46.6 vs. 4.4%, P<0.05) were highest during the group-housed phase compared to the individually housed phases. Although the prevalence of lameness and skin lesions did not differ three days after grouping versus at the end of the group-housing phase, their incidence peaked during the first three days after moving from the insemination stalls to the group. In conclusion, the first three days after grouping was the most risky period for lameness incidence, but there was no significant difference between static or dynamic group management
    corecore