503 research outputs found

    Experimental study of scattering in atom- surface collisions with atom energies of the order of eV

    Get PDF
    Supersonic molecular beams applied to study of interactions of neutral-particle beams with solid surface

    Defining the Riddle in Order to Solve It: There Is More Than One “Parkinson's Disease”

    Get PDF
    Background: More than 200 years after James Parkinsondescribed a clinical syndrome based on his astute observations, Parkinson's disease (PD) has evolved into a complex entity, akin to the heterogeneity of other complex human syndromes of the central nervous system such as dementia, motor neuron disease, multiple sclerosis, and epilepsy. Clinicians, pathologists, and basic science researchers evolved arrange of concepts andcriteria for the clinical, genetic, mechanistic, and neuropathological characterization of what, in their best judgment, constitutes PD. However, these specialists have generated and used criteria that are not necessarily aligned between their different operational definitions, which may hinder progress in solving the riddle of the distinct forms of PD and ultimately how to treat them. Objective: This task force has identified current in consistencies between the definitions of PD and its diverse variants in different domains: clinical criteria, neuropathological classification, genetic subtyping, biomarker signatures, and mechanisms of disease. This initial effort for “defining the riddle” will lay the foundation for future attempts to better define the range of PD and its variants, as has been done and implemented for other heterogeneous neurological syndromes, such as stroke and peripheral neuropathy. We strongly advocate for a more systematic and evidence-based integration of our diverse disciplines by looking at well-defined variants of the syndrome of PD. Conclusion: Accuracy in defining endophenotypes of “typical PD” across these different but interrelated disciplines will enable better definition of variants and their stratification in therapeutic trials, a prerequisite for breakthroughs in the era of precision medicine. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society

    AML1/ETO Oncoprotein Is Directed to AML1 Binding Regions and Co-Localizes with AML1 and HEB on Its Targets

    Get PDF
    A reciprocal translocation involving chromosomes 8 and 21 generates the AML1/ETO oncogenic transcription factor that initiates acute myeloid leukemia by recruiting co-repressor complexes to DNA. AML1/ETO interferes with the function of its wild-type counterpart, AML1, by directly targeting AML1 binding sites. However, transcriptional regulation determined by AML1/ETO probably relies on a more complex network, since the fusion protein has been shown to interact with a number of other transcription factors, in particular E-proteins, and may therefore target other sites on DNA. Genome-wide chromatin immunoprecipitation and expression profiling were exploited to identify AML1/ETO-dependent transcriptional regulation. AML1/ETO was found to co-localize with AML1, demonstrating that the fusion protein follows the binding pattern of the wild-type protein but does not function primarily by displacing it. The DNA binding profile of the E-protein HEB was grossly rearranged upon expression of AML1/ETO, and the fusion protein was found to co-localize with both AML1 and HEB on many of its regulated targets. Furthermore, the level of HEB protein was increased in both primary cells and cell lines expressing AML1/ETO. Our results suggest a major role for the functional interaction of AML1/ETO with AML1 and HEB in transcriptional regulation determined by the fusion protein

    Defining the Riddle in Order to Solve It:There Is More Than One “Parkinson's Disease”

    Get PDF
    © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.Background: More than 200 years after James Parkinsondescribed a clinical syndrome based on his astute observations, Parkinson's disease (PD) has evolved into a complex entity, akin to the heterogeneity of other complex human syndromes of the central nervous system such as dementia, motor neuron disease, multiple sclerosis, and epilepsy. Clinicians, pathologists, and basic science researchers evolved arrange of concepts andcriteria for the clinical, genetic, mechanistic, and neuropathological characterization of what, in their best judgment, constitutes PD. However, these specialists have generated and used criteria that are not necessarily aligned between their different operational definitions, which may hinder progress in solving the riddle of the distinct forms of PD and ultimately how to treat them. Objective: This task force has identified current in consistencies between the definitions of PD and its diverse variants in different domains: clinical criteria, neuropathological classification, genetic subtyping, biomarker signatures, and mechanisms of disease. This initial effort for "defining the riddle" will lay the foundation for future attempts to better define the range of PD and its variants, as has been done and implemented for other heterogeneous neurological syndromes, such as stroke and peripheral neuropathy. We strongly advocate for a more systematic and evidence-based integration of our diverse disciplines by looking at well-defined variants of the syndrome of PD. Conclusion: Accuracy in defining endophenotypes of "typical PD" across these different but interrelated disciplines will enable better definition of variants and their stratification in therapeutic trials, a prerequisite for breakthroughs in the era of precision medicine. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.T.F.O. is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy—EXC (2067/1-390729940). V.B. is supported by the Stichting Parkinson Fonds (the Netherlands). M.G.S. is supported by the Bhargava Family Research Chair in Neurodegeneration, the Department of Medicine at The Ottawa Hospital and its Foundation. B.M. is supported by The Michael J. Fox Foundation for PD Research, DFG, EU (Horizon 2020), the National Parkinson's Foundation, Parkinson Fonds Deutschland, and the Deutsche Parkinson Vereinigung. L.S. and T.F.O. were supported by IMPRiND and EU (Horizon 2020). H.S. was supported by the Advanced ERC program, The Michael J. Fox foundation, and the Israel Science Fund. We thank Dr. J.P. Vonsattel, Columbia University, for providing the images for Figure 2. Open Access funding enabled and organized by Projekt DEAL.info:eu-repo/semantics/publishedVersio

    Elevated GM3 plasma concentration in idiopathic Parkinson’s disease: A lipidomic analysis

    Get PDF
    Parkinson’s disease (PD) is a common neurodegenerative disease whose pathological hallmark is the accumulation of intracellular α-synuclein aggregates in Lewy bodies. Lipid metabolism dysregulation may play a significant role in PD pathogenesis; however, large plasma lipidomic studies in PD are lacking. In the current study, we analyzed the lipidomic profile of plasma obtained from 150 idiopathic PD patients and 100 controls, taken from the ‘Spot’ study at Columbia University Medical Center in New York. Our mass spectrometry based analytical panel consisted of 520 lipid species from 39 lipid subclasses including all major classes of glycerophospholipids, sphingolipids, glycerolipids and sterols. Each lipid species was analyzed using a logistic regression model. The plasma concentrations of two lipid subclasses, triglycerides and monosialodihexosylganglioside (GM3), were different between PD and control participants. GM3 ganglioside concentration had the most significant difference between PD and controls (1.531±0.037 pmol/μl versus 1.337±0.040 pmol/μl respectively; p-value = 5.96E-04; q-value = 0.048; when normalized to total lipid: p-value = 2.890E-05; q-value = 2.933E-03). Next, we used a collection of 20 GM3 and glucosylceramide (GlcCer) species concentrations normalized to total lipid to perform a ROC curve analysis, and found that these lipids compare favorably with biomarkers reported in previous studies (AUC = 0.742 for males, AUC = 0.644 for females). Our results suggest that higher plasma GM3 levels are associated with PD. GM3 lies in the same glycosphingolipid metabolic pathway as GlcCer, a substrate of the enzyme glucocerebrosidase, which has been associated with PD. These findings are consistent with previous reports implicating lower glucocerebrosidase activity with PD risk

    Long-term dementia prevalence in Parkinson Disease: Glass half-full?

    Get PDF
    Introduction: Dementia occurs in up to 80% of Parkinson’s disease (PD) patients long-term, but studies reporting such high rates were published years ago and had relatively small sample sizes and other limitations. Objective: To determine long-term, cumulative dementia prevalence rates in PD using data from two large, ongoing, prospective observational studies. Design: Analyses of data from the Parkinson’s Progression Markers Initiative (PPMI) and a longstanding PD research clinical core at the University of Pennsylvania (Penn). Setting: PPMI is a multi-site international study, and Penn is a single site study at a tertiary movement disorders center. Participants: PPMI enrolls de novo, untreated PD participants at baseline, and Penn enrolls a convenience cohort from a large clinical center. Methods: For PPMI a cognitive battery and MDS-UPDRS Part I are administered annually, and the site investigator assigns a cognitive diagnosis annually. At Penn a comprehensive cognitive battery is administered either annually or biennially, and a cognitive diagnosis is made by expert consensus. Main Outcomes: Kaplan-Meier (KM) survival curves were fit for time from PD diagnosis to stable dementia diagnosis for each cohort, using assigned cognitive diagnosis of dementia as the primary endpoint (for both PPMI and Penn), and MoCA score <21 and MDS-UPDRS Part I cognition score ≥3 as secondary endpoints (for PPMI). In addition, cumulative dementia prevalence by PD disease duration was tabulated for each study and endpoint. Results: For the PPMI cohort, 417 PD participants were seen at baseline; estimated cumulative probability of dementia at year 10 disease duration were: 7% (site investigator diagnosis), 9% (MoCA) or 7.4% (MDS-UPDRS Part I cognition). For the Penn cohort, 389 PD participants were followed over time, with 184 participants (47% of cohort) eventually diagnosed with dementia. The KM curve for the Penn cohort had median time to dementia diagnosis =15 years (95% CI: 13-15) disease duration; the estimated cumulative probability of dementia was 27% at year 10, 50% at year 15, and 74% at year 20. Conclusions and Relevance: Results from two large, prospective studies suggest that dementia in Parkinson disease occurs less frequently, or later in the disease course, than often-cited previous research studies have reported

    Polygenic Parkinson's Disease Genetic Risk Score as Risk Modifier of Parkinsonism in Gaucher Disease

    Get PDF
    Background: Biallelic pathogenic variants in GBA1 are the cause of Gaucher disease (GD) type 1 (GD1), a lysosomal storage disorder resulting from deficient glucocerebrosidase. Heterozygous GBA1 variants are also a common genetic risk factor for Parkinson's disease (PD). GD manifests with considerable clinical heterogeneity and is also associated with an increased risk for PD. Objective: The objective of this study was to investigate the contribution of PD risk variants to risk for PD in patients with GD1. Methods: We studied 225 patients with GD1, including 199 without PD and 26 with PD. All cases were genotyped, and the genetic data were imputed using common pipelines. Results: On average, patients with GD1 with PD have a significantly higher PD genetic risk score than those without PD (P = 0.021). Conclusions: Our results indicate that variants included in the PD genetic risk score were more frequent in patients with GD1 who developed PD, suggesting that common risk variants may affect underlying biological pathways. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA

    Landscape, Memory, and the Shifting Regional Geographies of Northwest Bosnia-Herzegovina

    Get PDF
    Writing and arguing with older discourses that have informed the subdiscipline of regional geography and setting them against new ways of conceiving of the region, this article considers the northwest of Bosnia-Herzegovina as a site that calls for a newly animated form of regional study. Of particular concern here is the role that memory and commemorative practices play in such a spatial schema. The monumental landscapes of the Tito regime and its collective commemoration of World War II sit alongside and are troubled by the more recent traumas and spaces of unmarked death associated with the ethnic war in Bosnia during the early 1990s. Read together, northwest Bosnia-Herzegovina functions as a vivid exemplar for understanding traumatic historical mourning as a phenomenological process that is inseparable from the wider geopolitical landscape
    corecore