2,162 research outputs found

    Geomorphic response of submarine canyons to tectonic activity: Insights from the Cook Strait canyon system, New Zealand

    Get PDF
    Active margins host more than half of submarine canyons worldwide. Understanding the coupling between active tectonics and canyon processes is required to improve modeling of canyon evolution and derive tectonic information from canyon morphology. In this paper we analyze high-resolution geophysical data and imagery from the Cook Strait canyon system (CS), offshore New Zealand, to characterize the influence of active tectonics on the morphology, processes, and evolution of submarine canyons, and to deduce tectonic activity from canyon morphology. Canyon location and morphology bear the clearest evidence of tectonic activity, with major faults and structural ridges giving rise to sinuosity, steep and linear longitudinal profi les, cross-sectional asymmetry, and breaks in slope gradient, relief, and slope-area plots. Faults are also associated with stronger and more frequent sedimentary fl ows, steep canyon walls that promote gully erosion, and seismicity that is considered the most likely trigger of failure of canyon walls. Tectonic activity gives rise to two types of knickpoints in the CS. Gentle, rounded and diffusive knickpoints form due to short-wavelength folds or fault breakouts. The more widespread steep and angular knickpoints have migrated through canyonfloor slope failures and localized quarrying and/or plucking. Migration is driven by base-level lowering due to regional margin uplift and deepening of the lower Cook Strait Canyon, and is likely faster in larger canyons because of higher sedimentary flow throughput. The knickpoints, nonadherence to Playfair"s Law, linear longitudinal profiles, and lack of canyon-wide, inverse power law slope-area relationships indicate that the CS is in a transient state, adjusting to perturbations associated with tectonic displacements and changes in base level and sediment fluxes. We conclude by inferring unmapped faults and regions of more pronounced uplift, and proposing a generalized model for canyon geomorphic evolution in tectonically active margins

    Simulation of metallic nanostructures for emission of THz radiation using the lateral photo-Dember effect

    Full text link
    A 2D simulation for the lateral photo-Dember effect is used to calculate the THz emission of metallic nanostructures due to ultrafast diffusion of carriers in order to realize a series of THz emitters.Comment: Corrected version of a paper given at 2011 36th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz

    Human PrimPol is a highly error-prone polymerase regulated by single-stranded DNA binding proteins

    Get PDF
    PrimPol is a recently identified polymerase involved in eukaryotic DNA damage tolerance, employed in both re-priming and translesion synthesis mechanisms to bypass nuclear and mitochondrial DNA lesions. In this report, we investigate how the enzymatic activities of human PrimPol are regulated. We show that, unlike other TLS polymerases, PrimPol is not stimulated by PCNA and does not interact with it in vivo. We identify that PrimPol interacts with both of the major single-strand binding proteins, RPA and mtSSB in vivo. Using NMR spectroscopy, we characterize the domains responsible for the PrimPol-RPA interaction, revealing that PrimPol binds directly to the N-terminal domain of RPA70. In contrast to the established role of SSBs in stimulating replicative polymerases, we find that SSBs significantly limit the primase and polymerase activities of PrimPol. To identify the requirement for this regulation, we employed two forward mutation assays to characterize PrimPol's replication fidelity. We find that PrimPol is a mutagenic polymerase, with a unique error specificity that is highly biased towards insertion-deletion errors. Given the error-prone disposition of PrimPol, we propose a mechanism whereby SSBs greatly restrict the contribution of this enzyme to DNA replication at stalled forks, thus reducing the mutagenic potential of PrimPol during genome replication

    AhrC and Eep are biofilm infection-associated virulence factors in enterococcus faecalis

    Get PDF
    Enterococcus faecalis is part of the human intestinal microbiome and is a prominent cause of health care-associated infections. The pathogenesis of many E. faecalis infections, including endocarditis and catheter-associated urinary tract infection (CAUTI), is related to the ability of clinical isolates to form biofilms. To identify chromosomal genetic determinants responsible for E. faecalis biofilm-mediated infection, we used a rabbit model of endocarditis to test strains with transposon insertions or in-frame deletions in biofilm-associated loci: ahrC, argR, atlA, opuBC, pyrC, recN, and sepF. Only the ahrC mutant was significantly attenuated in endocarditis. We demonstrate that the transcriptional regulator AhrC and the protease Eep, which we showed previously to be an endocarditis virulence factor, are also required for full virulence in murine CAUTI. Therefore, AhrC and Eep can be classified as enterococcal biofilm-associated virulence factors. Loss of ahrC caused defects in early attachment and accumulation of biofilm biomass. Characterization of ahrC transcription revealed that the temporal expression of this locus observed in wild-type cells promotes initiation of early biofilm formation and the establishment of endocarditis. This is the first report of AhrC serving as a virulence factor in any bacterial species

    Universal logic with encoded spin qubits in silicon

    Full text link
    Qubits encoded in a decoherence-free subsystem and realized in exchange-coupled silicon quantum dots are promising candidates for fault-tolerant quantum computing. Benefits of this approach include excellent coherence, low control crosstalk, and configurable insensitivity to certain error sources. Key difficulties are that encoded entangling gates require a large number of control pulses and high-yielding quantum dot arrays. Here we show a device made using the single-layer etch-defined gate electrode architecture that achieves both the required functional yield needed for full control and the coherence necessary for thousands of calibrated exchange pulses to be applied. We measure an average two-qubit Clifford fidelity of 97.1±0.2%97.1 \pm 0.2\% with randomized benchmarking. We also use interleaved randomized benchmarking to demonstrate the controlled-NOT gate with 96.3±0.7%96.3 \pm 0.7\% fidelity, SWAP with 99.3±0.5%99.3 \pm 0.5\% fidelity, and a specialized entangling gate that limits spreading of leakage with 93.8±0.7%93.8 \pm 0.7\% fidelity

    Focused fluid seepage related to variations in accretionary wedge structure, Hikurangi margin, New Zealand

    Get PDF
    Hydrogeological processes influence the morphology, mechanical behavior, and evolution of subduction margins. Fluid supply, release, migration, and drainage control fluid pressure and collectively govern the stress state, which varies between accretionary and nonaccretionary systems. We compiled over a decade of published and unpublished acoustic data sets and seafloor observations to analyze the distribution of focused fluid expulsion along the Hikurangi margin, New Zealand. The spatial coverage and quality of our data are exceptional for subduction margins globally. We found that focused fluid seepage is widespread and varies south to north with changes in subduction setting, including: wedge morphology, convergence rate, seafloor roughness, and sediment thickness on the incoming Pacific plate. Overall, focused seepage manifests most commonly above the deforming backstop, is common on thrust ridges, and is largely absent from the frontal wedge despite ubiquitous hydrate occurrences. Focused seepage distribution may reflect spatial differences in shallow permeability architecture, while diffusive fluid flow and seepage at scales below detection limits are also likely. From the spatial coincidence of fluids with major thrust faults that disrupt gas hydrate stability, we surmise that focused seepage distribution may also reflect deeper drainage of the forearc, with implications for pore-pressure regime, fault mechanics, and critical wedge stability and morphology. Because a range of subduction styles is represented by 800 km of along-strike variability, our results may have implications for understanding subduction fluid flow and seepage globally

    Sustained release of decorin to the surface of the eye enables scarless corneal regeneration

    Get PDF
    Ophthalmology: novel eye drop brings sustained drug delivery to ocular surface An eye drop formulation that applies anti-scarring drugs to the surface of the eye helps reverse infection-induced corneal damage in mice. Hill et al. from the University of Birmingham, UK, formulated a fluid gel loaded with a wound-healing protein called decorin that conforms to the ocular surface and is cleared gradually through blinking. With colleagues in California, they applied the therapeutic eye drop to mice with bacterial eye infections that trigger sight-threatening corneal scarring. Within a matter of days, the team saw improvements in corneal transparency, with reductions in scar tissue and reconstitution of healthy cells. Such a drug delivery system, if successful in humans, could help save many people’s sight and reduce the need for corneal transplantation

    Making data map-worthy—enhancing routine malaria data to support surveillance and mapping of <i>Plasmodium falciparum</i> anti-malarial resistance in a pre-elimination sub-Saharan African setting: a molecular and spatiotemporal epidemiology study

    Get PDF
    Background: Independent emergence and spread of artemisinin-resistant Plasmodium falciparum malaria have recently been confirmed in Africa, with molecular markers associated with artemisinin resistance increasingly detected. Surveillance to promptly detect and effectively respond to anti-malarial resistance is generally suboptimal in Africa, especially in low transmission settings where therapeutic efficacy studies are often not feasible due to recruitment challenges. However, these communities may be at higher risk of anti-malarial resistance. Methods: From March 2018 to February 2020, a sequential mixed-methods study was conducted to evaluate the feasibility of the near-real-time linkage of individual patient anti-malarial resistance profiles with their case notifications and treatment response reports, and map these to fine scales in Nkomazi sub-district, Mpumalanga, a pre-elimination area in South Africa. Results: Plasmodium falciparum molecular marker resistance profiles were linked to 55.1% (2636/4787) of notified malaria cases, 85% (2240/2636) of which were mapped to healthcare facility, ward and locality levels. Over time, linkage of individual malaria case demographic and molecular data increased to 75.1%. No artemisinin resistant validated/associated Kelch-13 mutations were detected in the 2385 PCR positive samples. Almost all 2812 samples assessed for lumefantrine susceptibility carried the wildtype mdr86ASN and crt76LYS alleles, potentially associated with decreased lumefantrine susceptibility. Conclusion: Routine near-real-time mapping of molecular markers associated with anti-malarial drug resistance on a fine spatial scale provides a rapid and efficient early warning system for emerging resistance. The lessons learnt here could inform scale-up to provincial, national and regional malaria elimination programmes, and may be relevant for other antimicrobial resistance surveillance.</br
    • …
    corecore