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ABSTRACT
Hydrogeological processes influence the morphology, mechanical behavior, and evolution 

of subduction margins. Fluid supply, release, migration, and drainage control fluid pressure 
and collectively govern the stress state, which varies between accretionary and nonaccretion-
ary systems. We compiled over a decade of published and unpublished acoustic data sets 
and seafloor observations to analyze the distribution of focused fluid expulsion along the 
Hikurangi margin, New Zealand. The spatial coverage and quality of our data are excep-
tional for subduction margins globally. We found that focused fluid seepage is widespread 
and varies south to north with changes in subduction setting, including: wedge morphology, 
convergence rate, seafloor roughness, and sediment thickness on the incoming Pacific plate. 
Overall, focused seepage manifests most commonly above the deforming backstop, is com-
mon on thrust ridges, and is largely absent from the frontal wedge despite ubiquitous hydrate 
occurrences. Focused seepage distribution may reflect spatial differences in shallow perme-
ability architecture, while diffusive fluid flow and seepage at scales below detection limits 
are also likely. From the spatial coincidence of fluids with major thrust faults that disrupt 
gas hydrate stability, we surmise that focused seepage distribution may also reflect deeper 
drainage of the forearc, with implications for pore-pressure regime, fault mechanics, and 
critical wedge stability and morphology. Because a range of subduction styles is represented 
by 800 km of along-strike variability, our results may have implications for understanding 
subduction fluid flow and seepage globally.

INTRODUCTION
Fluids—in their gaseous or liquid phase—

play a critical role in controlling the dynamics 
of accretionary wedges by influencing pore pres-
sure (Dahlen, 1990; Saffer and Bekins, 2006) 
and the mechanical behavior of faults (Sibson, 
1992; Kodaira et al., 2004; Liu and Rice, 2007; 
Bangs et al., 2015). Fluids are released from 
both the subducting plate and the accretionary 
wedge, due to compaction and thermally con-
trolled mineral-phase transformations. Efficient 
fluid migration relies on the occurrence of high 

permeability, i.e., flow pathways through faults, 
fractures, and high-porosity lithologies (Saffer 
and Tobin, 2011; Plaza-Faverola et al., 2012; 
Bangs et al., 2015).

Despite their important role at subduction 
zones, subsurface fluids are difficult to quan-
tify directly, although the seafloor manifesta-
tion of fluid flow is often observed as seeps 
(e.g., Judd and Hovland, 2009). Few studies 
have investigated seep distributions at a margin 
scale (e.g., Ranero et al., 2008; Sahling et al., 
2008; Barnes et al., 2010; Geersen et al., 2018; 
Riedel et al., 2018).

The Hikurangi margin, offshore the North 
Island of New Zealand, exhibits evidence for 

widespread fluid seepage (Lewis and Marshall, 
1996; Barnes et al., 2010; Greinert et al., 2010), 
together with variations in tectonic structure and 
processes capturing a range of subduction styles 
(Fig. 1). These variations include changes in the 
rate and obliquity of plate convergence (Wal-
lace et al., 2004), occurrence of subducting sea-
mounts, accretionary versus erosional subduc-
tion behavior, and wedge morphology (Lewis 
and Pettinga, 1993; Barnes et al., 2010). From 
south to north, the deformation setting changes 
from subduction to transform transition, to clas-
sical frontal accretion, and finally to widespread 
frontal tectonic erosion with seamount subduc-
tion. These changes accompany a northward re-
duction in sediment thickness on the subducting 
Pacific plate, from ∼9 km (Fig. 1; Plaza-Faverola 
et al., 2012) to ∼1–2 km (Barker et al., 2009, 
2018). The margin attains a width of 150 km, 
characterized by a deforming Late Cretaceous–
Paleogene presubduction foundation inboard 
of a late Cenozoic accretionary wedge (Lewis 
and Pettinga, 1993; Barnes et al., 2010; Ghisetti 
et al., 2016). Estimates of the average volume 
of fluids subducted and accreted along strike 
are high (∼57 m3 yr–1 m–1; Pecher et al., 2010), 
with a significant reduction expected northward, 
and the vast majority drained from the wedge 
(Ellis et al., 2015).

We investigated the distribution of focused 
fluid seepage using an exceptional high-quality 
regional data set from the Hikurangi margin, 
including: (1) hydro-acoustic data that image 
active gas bubbles; (2) seafloor camera observa-
tions of chemosynthetic seep ecosystems; and 
(3) geomorphological and seafloor acoustic *E-mail: Sally.Watson@niwa.co.nz
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backscatter data indicative of substrates asso-
ciated with focused fluid seepage (Fig. 2; see 
the GSA Data Repository1 for individual pre-
sentation of seepage features, grid sizes, and 
observation thresholds). We used observed spa-
tial patterns of seep distribution to map shallow-
wedge permeability, and then we considered the 
implications for hydrological framework and 
subduction processes.

SEEP INDICATORS AND THEIR 
DISTRIBUTION ON THE HIKURANGI 
MARGIN

There is extensive evidence for both active 
and relict (or dormant) focused fluid seepage 
in water depths of 50–2400 m along the mar-
gin (Figs. 2A–2C). Pockmarks are widespread 
on the outer shelf and upper slope (28% of the 
database); however, very few pockmarks have 
concomitant indicators of seep activity and are 
not considered herein.

Active focused seepage was identified from 
hydro-acoustic flares and/or direct observations 
of live seep fauna (Figs. 2A–2C), commonly with 
characteristic rough seafloor geomorphology, high 
seafloor backscatter intensity, and mounds. Ap-
proximately 75% of authigenic carbonate obser-
vations were corroborated by evidence for active 
seepage (Fig. 2; see also the Data Repository).

Focused seepage occurs across the inboard 
margin, at sites located on the outer continental 
shelf, slope, and thrust ridges. Generally, seep-
age indicators are rare across the outer margin 
(Figs. 2A–2C and 3A–3C).

The northern margin is characterized by ac-
tive, spatially concentrated fluid expulsion on 
the outer shelf and upper slope (including active 
pockmarks with coincident flares; seep site spa-
tial density: ∼1/17 km2; Figs. 2A and 3A). For 
example, the Tuaheni Seep Field covers ∼90 km2 
and includes >1700 seep indicators (including 
flares, mounds, and pockmarks) in water depths 
of 58–532 m, making it the most spatially con-
centrated and shallowest seep area observed 
anywhere on the margin (Fig. 2A; Higgs et al., 
2019). Farther offshore, active seepage is scat-
tered mainly along midslope ridges (Figs. 2A 
and 3A).

Approximately 5% (n = 161) of the seep 
occurrences were observed within the wide, 
central margin between Ōmakere and Urutī 
Ridges (Fig. 2B). Here, sparsely focused seeps 
are particularly rare at seafloor depths >650 m 
(Figs. 2A–2C; seep site spatial density: ∼1/139 
km2), with only 19 hydro-acoustic flares and one 
seafloor observation of authigenic carbonate 
(Figs. 2B and 3B). Indications of active focused 
seepage are largely absent from the 70-km-wide 
frontal accretionary wedge.

Across the southern margin, active, sus-
tained, and focused seepage is widespread but 
concentrated mainly on thrust ridges (Figs. 2C 
and 3C). The Glendhu and Honeycomb Ridg-
es (∼2100–2400 m water depths) are the only 
sites with evidence of active seepage at seafloor 
depths >2100 m and proximal to the deforma-
tion front (Fig. 2C). At the southern extent of the 
margin, seepage is widespread along the crest of 
Kekerengū Bank, while the southernmost seep 
site lies in the Kōwhai Sea Valleys (Fig. 2C).

RELATIONSHIP BETWEEN 
FLUID SEEPAGE AND MARGIN 
CHARACTERISTICS

The comprehensive spatial coverage and 
quality of our data are exceptional for subduc-
tion margins globally (e.g., Ranero et al., 2008; 
Geersen et al., 2018; Riedel et al., 2018). Hydro-
acoustic flares are the most common seepage 
indicator (∼46% of the database), indicative of 
active focused gas expulsion (Fig. 2).

The distribution of active focused seepage 
on the Hikurangi margin may reflect variations 
in the shallow permeability architecture of the 
wedge. Shallow fluid pathways may in turn re-
flect higher permeability at depth, governed by 
the regional tectonic framework (Figs. 2A–2C 
and 4A–4C). In the north, where the conver-
gence rate is ∼5 cm/yr, the Tuaheni Seep Field 
is spatially correlated with localized and possi-
bly shallow extensional faulting (Böttner et al., 
2018), immediately east of major thrust faults 

1GSA Data Repository item 2020017, 
methodologies, equipment specifications, individual 
presentation of seepage features, grid sizes, and 
observation thresholds, and an MSExcel spreadsheet 
containing all fluid expulsion features presented in 
this study, with coordinates, depth and voyage/dataset 
reference, is available online at http://www.geosociety.
org/datarepository/2020/, or on request from editing@
geosociety.org.

Figure 1.  Hikurangi margin, offshore the North Island of New Zealand. Black dots are loca-
tions of onshore seepage (Campbell, 2006; Campbell et al., 2008). Colored region offshore 
represents the surveyed region (see the Data Repository [see footnote 1] for more detailed 
information on the extent of the multibeam echosounder [MBES] and water-column backscat-
ter data coverage). North-to-south changes in tectonic structure and subduction processes 
that may be contributing to the distribution of fluid seepage on the seafloor are annotated on 
the map and detailed on schematic bars at right. Purple semitransparent contours represent 
total slip detected in slow slip events on the subduction interface since 2002 CE (contour 
values in mm). Pink dashed line is the boundary between strong interseismic coupling in the 
north and weak interseismic coupling in the south, determined by the coupling coefficient on 
the subduction interface (Wallace and Beavan, 2010; Wallace et al., 2018). Sem-itransparent 
green areas are high-amplitude reflectivity zones (HRZ) beneath the interface as interpreted 
in seismic reflection profiles (Bell et al., 2010). Bold black arrows are convergence vectors, 
with convergence rate below (Beavan et al., 2002); bold values adjacent to the deformation 
front are orthogonal convergence rates from Wallace et al. (2004, 2012). For Figures 1 and 2, 
major strike-slip faults (thin blue lines) and thrust faults (thin black lines) are displayed both 
onshore and offshore. Thick yellow line is 650 m depth contour representing the upper limit 
of gas hydrate stability in this region. Black dashed lines represent the boundaries between 
different tectonic domains on the margin (Lewis and Pettinga, 1993; Collot et al., 1996; Barker 
et al., 2009; Barnes et al., 2010; Fagereng, 2011). Pale red line is the backstop boundary denot-
ing the boundary between deforming Late Cretaceous–Paleogene presubduction sequence 
and the frontal wedge, composed of late Cenozoic trench-fill sequences (Lewis and Pettinga, 
1993; Barnes et al., 2010). Navy blue line represents the deformation front, with subduction 
teeth on the overriding plate (Barnes et al., 2010, 2018).
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that intersect with the weakly coupled plate in-
terface inland of the coast (Barnes et al., 2002; 
Mountjoy and Barnes, 2011). Active focused 
seepage between Rock Garden and Tolaga Knoll 
(Figs. 2A and 2B) lies landward of the frontal 
accretionary wedge and coincides with active 
thrust faulting and upper-plate fracture networks 

above and landward of subducting seamounts 
(Barnes et al., 2010; Pedley et al., 2010; Bell 
et al., 2010, 2014; Plaza-Faverola et al., 2014; 
Barker et al., 2018).

Zones of active focused seepage at North 
Hikurangi overlie regions characterized by 
microseismicity and tectonic tremor (Todd and 

Schwartz, 2016; Todd et al., 2018), shallow slow 
slip events (Wallace and Beavan, 2010; Wallace 
et al., 2016), and a highly reflective subduct-
ing unit that has been inferred to be fluid rich 
(Barker et al., 2009; Bell et al., 2010), moder-
ately overpressured, and associated with sea-
mount subduction (Fig. 1; Bassett et al., 2014; 
Ellis et al., 2015). Hydrofracturing at the inner-
plate interface facilitates fluid drainage from the 
subducting sequence by providing secondary 
permeability in the overriding plate (Ellis et al., 
2015), as supported by mantle/slab He isotope 
signatures in onshore fluid seeps (Reyes et al., 
2010). Similarly, active seepage off the coast of 
Costa Rica is closely associated with subducted 
seamounts on the Cocos plate (Ranero et al., 

A

B

C

Figure 2.  Maps showing distribution of fluid-expulsion indicators along the Hikurangi margin, 
offshore the North Island of New Zealand, according to broad-scale margin geomorphology. 
(A) Frontal tectonic erosion and seamount subduction zone. (B) Subduction accretion–low-
taper zone. P-K—Palliser-Kaiwhata fault. (C) Subduction accretion–transpressional zone. Black 
dashed lines represent boundaries between the different tectonic domains on the Hikurangi 
margin. Please refer to Figure 1 and/or the Data Repository (see footnote 1) for mapped cover-
age of the multibeam bathymetry and water-column data on the margin. Features described in 
the text are labeled. Examples and implications of each fluid expulsion indicator presented in 
this study are provided in the legend. Seep site spatial density was calculated by dividing the 
total mapped area within the zone (km2) by the corresponding number of seepage indicators 
for that zone, presented as one seep indicator per unit area.

A

B

C

Figure 3.  Bar graphs showing distribution of 
each fluid expulsion indicator as a function 
of geomorphic zones for (A) frontal tectonic 
erosion and seamount subduction zone, (B) 
subduction accretion–low-taper zone, and (C) 
subduction accretion–transpressional zone 
at the Hikurangi margin, offshore the North 
Island of New Zealand. Note the different y-
axis scales in A–C. Refer to Figure 2 for the 
broad-scale margin morphology associated 
with these graphs. Seep site spatial density 
for each zone is annotated.
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2008; Sahling et al., 2008). Intriguingly, we ob-
served no evidence for active focused seepage 
in the Poverty re-entrant, across the ∼7000 km2 
Ruatoria re-entrant and associated debris-ava-
lanche deposits, and in the Poverty Sea Valleys 
and canyons. These features are considered to 
have evolved from major impact scars (wake av-
alanches) associated with subducted seamounts 
(Fig. 2A; Lewis et al., 1998; Collot et al., 2001; 
Pedley et al., 2010). The chaotic nature of the 
debris-avalanche deposits may not favor local-
ized fluid expulsion. We also observed a distinct 
lack of focused seepage on the relatively narrow 
(15–25 km), highly tapered (10°–15°) frontal 
accretionary wedge in the northern margin.

The wide (150 km), low-taper (4°) central 
margin wedge, characterized by a decreased 
orthogonal convergence rate (3–4 cm/yr) and 
increased sedimentary thickness on the sub-
ducting plate (3–4 km), has the lowest density 
of seepage observed on the margin (Figs. 2B 
and 3B). The absence of active focused seep-
age in this region, compared to the northern 

and southern areas, could be related to more 
distributed, diffuse and/or smaller-scale fluid 
expulsion, which may not be detectable in 
acoustic water-column backscatter data or at 
the scale measured in this study. Diffuse fluid 
expulsion has been documented to represent the 
majority of fluids expelled at some accretion-
ary margins (e.g., Nankai and Barbados; Saffer 
and Bekins, 1998, 1999), and thus may also 
play a significant role in wedge dewatering of 
the central Hikurangi margin wedge. Hydro-
acoustic flares occur predominantly on thrust 
ridges deforming the presubduction founda-
tion of the inner margin (Barnes et al., 2010; 
Pecher et al., 2010). These fluids may reflect 
microbial methanogenesis coupled with shal-
low permeable pathways and/or fluids released 
from compaction of subducting sediments, and 
clay dehydration reactions (e.g., Bekins et al., 
1994; Hyndman et al., 1997; Reyes et al., 2010; 
Plaza-Faverola et al., 2016), with upward flow 
along structure-induced permeability (Fig. 4B; 
Barnes et al., 2010).

To the south, the margin-normal conver-
gence rate decreases nearly fourfold, from 
∼3 to 0.6 cm/yr, and the wedge narrows from 
∼100 km to ∼40 km wide (Fig. 1). Focused seep-
age extends to the deformation front at Honey-
comb Ridge, and up to 130 km farther south 
than previously recognized along the midslope 
Kekerengū Bank thrust ridge (Fig. 2C). While 
seep sites at Urutī Ridge are proximal to the 
northern strike-slip section of the Palliser-Kai-
whata fault, no seepage was observed directly 
along the other major strike-slip faults of the 
southern margin (Fig. 2C). A correlation was 
found, however, between the distribution of fluid 
seepage on thrust ridges and the spatial distri-
bution of concentrated gas hydrate indicators 
in regional seismic data (cf. Crutchley et al., 
2019). We surmise that deforming thrust ridges 
in this context are more efficient wedge dewater-
ing structures than strike-slip faults or are more 
effective structural traps for migrating fluids, 
enabling the development of productive seep 
environments. Although strike-slip faults have 
been previously considered to be effective de-
watering conduits in other accretionary settings 
(e.g., Wecoma fault, Oregon; Tobin et al., 1993), 
the lack of observed focused seepage along such 
faults on the southern margin supports the notion 
that fluid expulsion along strike-slip margins is 
relatively sparse compared to subduction set-
tings (Fig. 4C; Maloney et al., 2015).

We observed an overall lack of evidence 
for focused fluid seepage across the Hikurangi 
margin frontal wedge, despite rapid accretion of 
thick trench sediments (Fig. 2B; Ghisetti et al., 
2016), and the expectation of compaction-driven 
dewatering dominating fluid sources (Saffer and 
Bekins, 2006; Ellis et al., 2015). At least 90% of 
observed seepage occurs above the deforming 
Late Cretaceous–Paleogene foundation, and it 
is most prevalent ∼20–70 km landward of the 
deformation front (Figs. 2A–2C). The absence 
of focused seepage across the central margin 
frontal wedge may reflect poor drainage, result-
ing in elevated fluid pressures, a relatively weak 
plate interface, and low-taper (2°–4°) morphol-
ogy (Fig. 4B). Alternatively, dewatering of the 
central Hikurangi margin and frontal wedge 
manifests predominantly as diffuse seepage, 
below our detection threshold (cf. Nankai ac-
cretionary margin; Saffer and Bekins, 1998). 
Low-taper, stable accretionary wedges typical 
of the central Hikurangi margin are thought to 
reflect poorly drained systems with a basal fault 
zone that is either fluid overpressured or friction-
ally weak, relative to the wedge (Dahlen, 1990; 
Sibson and Rowland, 2003; Ellis et al., 2019). 
We note that the wide low-taper Washington sec-
tor of the Cascadia margin has a similar distribu-
tion of seepage (Riedel et al., 2018) and strong 
interseismic coupling (Schmalzle et al., 2014). 
Active focused seepage on the Hikurangi margin 
does not show any obvious spatial relationship 

A

B

C

Figure 4.  Conceptualized cross sections of the Hikurangi margin (offshore the North Island 
of New Zealand) illustrating along-strike variability in tectonic setting and stratigraphic archi-
tecture, representative active fluid seepage locations, and inferred major fluid-flow pathways. 
(A) Northern margin characterized by seamount subduction (adapted from sections in Barnes 
et al., 2002, 2010; Nicol et al., 2007). (B) Wide, accretionary central margin (adapted from sec-
tions in Barnes et al., 2002, 2010; Ghisetti et al., 2016; Plaza-Faverola et al., 2016). (C) Narrow, 
transpressive southern margin (adapted from sections in Plaza-Faverola et al., 2012; Bland 
et al., 2015; Kroeger et al., 2015). Convergence rates, slow slip events (SSEs), and interseismic 
coupling are from Wallace et al. (2004, 2012, 2016) and Wallace and Beavan (2010). Seep loca-
tions within each respective sector are projected along strike onto each section. Locations 
of the Deformation Front (DF) and Frontal Thrust (FT) are labeled.
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with the slow slip events and/or interseismic 
coupling (Figs. 1 and 2A–2C).

CONCLUSIONS
Active focused seepage along the Hikurangi 

margin manifests mostly above the deforming 
backstop, likely exploits tectonically generated 
conduits that disrupt regional gas hydrate stability, 
and is largely absent from the frontal wedge. Pat-
terns of seepage vary in accordance with changes 
in subduction setting (from the subduction ac-
cretion–transpressional zone, to subduction ac-
cretion–low-taper zone, and finally to seamount 
subduction and frontal tectonic erosion zone), 
convergence rate, and subducting plate roughness 
and sediment thickness. North-to-south variations 
in focused seepage observed in the current data 
set support previous suggestions that changes in 
subduction processes influence structural perme-
ability and drainage pathways. We expect that 
large-scale seafloor seepage patterns may provide 
important insights into the deeper mechanics of 
accretionary and nonaccretionary systems.
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