75 research outputs found

    Non-equilibrium Effects in the Thermal Switching of Underdamped Josephson Junctions

    Get PDF
    We study the thermal escape problem in the low damping limit. We find that finiteness of the barrier is crucial for explaining the thermal activation results. In this regime low barrier non-equilibrium corrections to the usual theories become necessary. We propose a simple theoretical extension accounting for these non-equilibrium processes which agrees numerical results. We apply our theory to the understanding of switching current curves in underdamped Josephson junctions.Comment: 4 pages + 4 figure

    Pull-in control due to Casimir forces using external magnetic fields

    Full text link
    We present a theoretical calculation of the pull-in control in capacitive micro switches actuated by Casimir forces, using external magnetic fields. The external magnetic fields induces an optical anisotropy due to the excitation of magneto plasmons, that reduces the Casimir force. The calculations are performed in the Voigt configuration, and the results show that as the magnetic field increases the system becomes more stable. The detachment length for a cantilever is also calculated for a cantilever, showing that it increases with increasing magnetic field. At the pull-in separation, the stiffness of the system decreases with increasing magnetic field.Comment: accepted for publication in App. Phys. Let

    Parametric resonances in electrostatically interacting carbon nanotube arrays

    Get PDF
    We study, numerically and analytically, a model of a one-dimensional array of carbon nanotube resonators in a two-terminal configuration. The system is brought into resonance upon application of an AC-signal superimposed on a DC-bias voltage. When the tubes in the array are close to each other, electrostatic interactions between tubes become important for the array dynamics. We show that both transverse and longitudinal parametric resonances can be excited in addition to primary resonances. The intertube electrostatic interactions couple modes in orthogonal directions and affect the mode stability.Comment: 11 pages, 12 figures, RevTeX

    Coupling Between Thermal Oscillations in the Surface of a Micro-Cylinder and Vortex Shedding

    Get PDF
    his article studies the coupling between prescribed thermal oscillations in the surface of a micro-cylinder and vortex shedding. We deal with the unsteady, laminar, compressible flow regime where the aerodynamics forces have a periodic behavior. It is shown that appropriate spatial and time-dependent temperature oscillations on the surface of the micro-cylinder create a resonance that controls the amplitude and frequency of both lift and drag coefficients. In practice, what we study is a mechanism to modulate the amplitude and frequency of mechanical loads of aerodynamics origin in a micro-structure by using surface temperature fluctuations as the control parameter

    Reduction of the Casimir force using aerogels

    Full text link
    By using silicon oxide based aerogels we show numerically that the Casimir force can be reduced several orders of magnitude, making its effect negligible in nanodevices. This decrease in the Casimir force is also present even when the aerogels are deposited on metallic substrates. To calculate the Casimir force we model the dielectric function of silicon oxide aerogels using an effective medium dielectric function such as the Clausius-Mossotti approximation. The results show that both the porosity of the aerogel and its thickness can be use as control parameters to reduce the magnitude of the Casimir force.Comment: to appear J. Appl. Phy

    The effect of local thermal fluctuations on the folding kinetics: a study from the perspective of the nonextensive statistical mechanics

    Full text link
    Protein folding is a universal process, very fast and accurate, which works consistently (as it should be) in a wide range of physiological conditions. The present work is based on three premises, namely: (ii) folding reaction is a process with two consecutive and independent stages, namely the search mechanism and the overall productive stabilization; (iiii) the folding kinetics results from a mechanism as fast as can be; and (iiiiii) at nanoscale dimensions, local thermal fluctuations may have important role on the folding kinetics. Here the first stage of folding process (search mechanism) is focused exclusively. The effects and consequences of local thermal fluctuations on the configurational kinetics, treated here in the context of non extensive statistical mechanics, is analyzed in detail through the dependence of the characteristic time of folding (τ\tau) on the temperature TT and on the nonextensive parameter qq.The model used consists of effective residues forming a chain of 27 beads, which occupy different sites of a 33-D infinite lattice, representing a single protein chain in solution. The configurational evolution, treated by Monte Carlo simulation, is driven mainly by the change in free energy of transfer between consecutive configurations. ...Comment: 19 pages, 3 figures, 1 tabl

    Experimental signatures of the quantum-classical transition in a nanomechanical oscillator modeled as a damped driven double-well problem

    Full text link
    We demonstrate robust and reliable signatures for the transition from quantum to classical behavior in the position probability distribution of a damped double-well system using the Qunatum State Diffusion approach to open quantum systems. We argue that these signatures are within experimental reach, for example in a doubly-clamped nanomechanical beam.Comment: Proceedings of the conference FMQT 1

    The time singular limit for a fourth-order damped wave equation for MEMS

    Get PDF
    We consider a free boundary problem modeling electrostatic microelectromechanical systems. The model consists of a fourth-order damped wave equation for the elastic plate displacement which is coupled to an elliptic equation for the electrostatic potential. We first review some recent results on existence and non-existence of steady-states as well as on local and global well-posedness of the dynamical problem, the main focus being on the possible touchdown behavior of the elastic plate. We then investigate the behavior of the solutions in the time singular limit when the ratio between inertial and damping effects tends to zero

    A free boundary problem modeling electrostatic MEMS: II. nonlinear bending effects

    Get PDF
    Well-posedness of a free boundary problem for electrostatic microelectromechanical systems (MEMS) is investigated when nonlinear bending effects are taken into account. The model describes the evolution of the deflection of an electrically conductive elastic membrane suspended above a fixed ground plate together with the electrostatic potential in the free domain between the membrane and the fixed ground plate. The electrostatic potential is harmonic in that domain and its values are held fixed along the membrane and the ground plate. The equation for the membrane deflection is a parabolic quasilinear fourth-order equation, which is coupled to the gradient trace of the electrostatic potential on the membrane

    Pull-in control in microswitches using acoustic Casimir forces

    Get PDF
    In this paper we present a theoretical calculation of the acoustic Casimir pressure in a model micro system. Unlike the quantum case, the acoustic Casimir pressure can be made attractive or repulsive depending on the frequency bandwidth of the acoustic noise. As a case study, a one degree of freedom simple-lumped system in an acoustic resonant cavity is considered. We show that the frequency bandwidth of the acoustic field can be tuned to increase the stability in existing microswitch systems by selecting the sign of the force. The acoustic intensity and frequency bandwidth are introduced as two additional control parameters of the microswitch
    corecore