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This article st lidies the coupling between prescribe d thermal oscillations in the sur face of a 
micro-cylinder and vortex shedding. We deal with the unsteady, laminar, compressible flow 
regime where the aerodynamics forces have aperiodic behavior. It is shown that appropriate 
spatial and time-dependent temperature oscillations on the surface of the micro-cylinder 
créate a resonance that controls the amplitude and frequeney ofboth lift and drag coeffi-
cients. Inpractice, what we study is a mechanism to modulate the amplitude and frequeney of 
mechanical loads of aerodynamics origin in a micro-structure by using surface temperature 
fluctuations as the control parameter. 
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INTRODUCTION 

One reason why MEMS are attractive from the engineering point of view is 
that they allow for a highly integrated level of actuation. For instance, a mesoscale 
actuator such as, for instance, a positioning system, converts electric impulses into 
mechanical forcé and displacement by using a dedicated transformation device; 
Le., the electric motor. In some cases, additional subsystems like hydraulic net-
works are also required to achieve the actuator practical objectives. On the 
contrary, a distinctive feature of the microscale is that conversión between the 
electric, thermal, fluid, and mechanical modes is achieved in a much more direct 
way. A wide spectrum of examples of this type has been recently presented by 
Pelesko and Bernstein [1], where the authors address coupled thermo-elastic 
systems, electrostatic-elastic systems, magnetically actuated micro-fluidic devices 
such as micro-pumps, et cetera. A comprehensive review of the different aspeets 
associated to the analysis and simulation of these integrated systems has been 
provided by Kirby et al. [2]. 
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NOMENCLATURE 

coefficient in the temperatura 
boundary condition definition 
coefficient in the temperatura 
boundary condition definition 
drag coefficient: 2f /p^iP^D 
average drag coefficient 
lift coefficient: 7fy Ip^u^D 
máximum of the lift coefficient 
coefficient in the temperatura 
boundary condition definition 
cylinder diameter 
typical distance inside a cloud of 
points 
coefficient in the temperatura 
boundary condition definition 
horizontal forcé on the micro-
cylinder 
vertical forcé on the micro-
cylinder 
artificial dissipation operator 
upstream Mach number: 
^ o o ' KÍ^-gas * ooj 

Prandtl number 
upstream Reynolds number: 

Strouhal number: l/rd CJ,cfe 

dimensionless temperatura 
upstream temperature 
dimensionless time 
dimensionless horizontal 
velocity 
upstream horizontal velocity 
dimensionless vertical velocity 

X 

y 

Greek 
A 
7 
¿2p 

¿>4p 

S4T 

¿4u 

e 
X0-X5 

M 
£ 

p 
Poc 

Td cycle 

O 

dimensionless horizontal 
coordínate 
dimensionless vertical 
coordínate 

Symbols 
increment 
specific heat ratio 
second-order artificial 
dissipation parameter in the 
continuity equation 
fourth-order artificial 
dissipation parameter in the 
continuity equation 
fourth-order artificial 
dissipation parameter in the 
energy equations 
fourth-order artificial 
dissipation parameter in the 
momentum equations 
azimuth angle 
coefficients in the least squares 
approximation 
fluid viscosity 
combination of artificial 
dissipation and discretization 
parameters 
dimensionless density 
upstream density 
dimensionless time needed for 
the Cl to complete one cycle 
representation for either p, u, v, 
orT 

The analysis of the coupling between fluid flow and heat transfer from a 
cylinder has been addressed extensively in the literature. Iwai et al. [3] have studied 
experimentally and numerically the heat transfer from a circular cylinder when the 
incoming flow fíeld has a low-frequency oscillating character. They concluded that 
both heat transfer enhancement and reduction occur during a given cycle and that 
they counterbalance each other on the average. The problem of convection from a 
rotating cylinder located in a uniform stream has been analyzed by Mahfouz and 
Badr [4]. These authors found that there is a frequeney lock-on phenomenon that 
enhances heat transfer signifícantly. The effect that streamwise oscillations have on 
heat transfer from a heated cylinder has been addressed by Gau et al. [5], who 
pointed out that synchronization oceurs and that it enhances heat transfer by a 
sizable amount. The relation between the Reynolds and Strouhal numbers when 
dealing with the flow that moves around a heated cylinder at constant wall tempera-
ture has been analyzed experimentally by Wang et al. [6]. In particular, they propose 
a novel effective temperature concept that allows for generalization of their results. 



Other examples oí coupling between flow oscillation and heat transfer have been 
provided by Zhang et al. [7] and Ramos et al. [8]. The former deals with a heated 
oscillating píate, while the later addresses boundary layer flow in the presence oí a 
fíat wall having surface temperature space variations. Finally, an interesting fluid 
coupling study that also involves a magnetizing forcé has been recently published by 
Kang and Hyun [9]. References cited previously deal with the incompressible flow 
regime and, except for the study presented by Ramos et al. [8], wall temperature is 
assumed to be constant. Guo and Wu [10, 11] have analyzed heat transfer in a 
microtube when compressibility effects are important. More recently, Linares and 
Velazquez [12] have studied how different valúes of constant heat transfer in the 
surface of a micro-cylinder affect lift and drag in the unsteady, laminar, compres-
sible limit. In particular, they found that lift is rather sensitive to cylinder wall heat 
flux and that it could be nearly halved for some specific heating rates. 

The present work goes a step beyond the scope of Linares and Velazquez [12]. 
We now study whether a prescribed spatial and temporal thermal oscillation in the 
surface of a micro-cylinder could créate a resonance with the vortex shedding 
phenomenon to control the extent of aerodynamics forces. Also, we analyze whether 
the vortex shedding frequency could be modified by using the same control parameter 
and whether it is feasible to change it from one cycle to the next while keeping 
constant the frequency of the temperature pulsation. Regarding practical implemen-
tation of the coupling effect, Dobrovolsky et al. [13] have shown that it is possible to 
genérate high-amplitude, high-frequency temperature oscillations (up to 3 MHz) in 
silicon-on-insulator structures. In our study, we consider vortex shedding frequencies 
in the range from 10 to 100 KHz, which is below the threshold described in 
Dobrovolsky et al. [13]. 

The following section describes the problem under consideration and the gov-
erning equations and boundary conditions. A brief description of the space and time 
integration schemes is presented next, and it is followed by a discussion on the 
artificial dissipation terms used in the simulation and their boundary conditions. 
The next section deals with solver validation and sensitivity of the results with regard 
to several computational parameters. Then, the results obtained under a variety of 
conditions are presented and conclusions are given. 

DESCRIPTION OF THE PROBLEM, GOVERNING EQUATIONS AND 
BOUNDARY CONDITIONS 

We restrict ourselves to the compressible, laminar, unsteady free stream regime 
and consider ideal fluid properties. In particular, we look for the prescribed spatial 
and temporal surface temperature oscillations that resonate with the natural fre
quency of vortex shedding. In this way, we try to enhance or diminish the amplitude 
of the aerodynamics forces and intend to exert some control on the vortex shedding 
frequency. The flow parameters that we consider in our study are Mach 0.4 and 
Reynolds 150. It will be shown in the results section that the associated vortex 
shedding Strouhal number is in the range from 0.17 to 0.18. In these conditions, if 
we consider the flow of air in the following range—temperature from 300 to 600 K and 
density from 0.1 to 0.01 kg/m3—we end up with cylinder diameters in the range from 
200 /im to 2 mm and vortex shedding frequencies of the order of 10 to 100 KHz. For all 



these cases, the Knudsen number (ratio of the gas mean free path to the characteristic 
length of the problem taken as the micro-cylinder diameter) is smaller than 0.01, 
thereby justifying the assumption of continuous médium. 

Even though the equations and boundary conditions of the problem have been 
described in Linares and Velazquez [12], they are repeated here for the sake of 
completion. 

Continuity: 

dp du dp dv dp 
dt dx dx dy dy (1) 

Momentum: 

d2u d2u d2v du du du 1 ÍdT Tdp\ 1 
dt dx dy 7M2 \dx p dx) p Re ^ dx2 ' dy2 ' dxdy 

dv dv dv 1 ÍdT Tdp\ 1 / d2v d2v d2v \ 

dt dx dy 7M2 \dy p dy) p Re \ dy2 dx2 dxdy) 

Internal energy: 

(2) 

(3) 

dT dT 

dt dx • 4 ^ = ( l -7 ) r dy 

(du 

+ 7 ( 7 - 1 ) 
M2 

p R e 
du 
dx 

di 

-M 
7 d2T d2T 

\dx dy) p Re Pr \dx2 dy2 

2 / a - A 2 'du dv"2' 
dy dx 

(4) 

Dimensionless variables p, u, v, T, x, y, and t are density, horizontal and vertical 
velocity, temperature, spatial coordinates, and time, respectively. Variables are ren-
dered dimensionless by using the unperturbed upstream density p^, horizontal velo
city MQQ, temperature T^, and cylinder diameter D. 7 is the specific heat ratio, Mthe 
upstream Mach number, Re the Reynolds number based on D, and Pr the Prandtl 
number. State equation has been used to remove pressure from the momentum and 
energy equations. Boundary conditions are 

Inflow section : u = 1, v = 0, 
cPp 
dn2 0, T= 1 

du n dv n dp dT 
outflow section : — = 0, — = 0, — = 0, —— = 0 

dn dn dn dn 

(5) 

(6) 

Cylinder wall: u = 0, 0, T - wally ,0 (7) 

where n is the normal to the considered section and 6 is the azimuthal angle 
along the micro-cylinder wall measured counterclock wise (see Figure 1). Density 
p at the wall is computed by solving the continuity equation by using one-side 
derivatives [14]. 



Incoming flow 

Figure 1. Computational domain and basic cloud configuration. 

SPACE AND TIME INTEGRATION 

We follow a finite point approach, similar to the one presented in Méndez and 
Velazquez [15, 16] for incompressible flows, where local functional approximations oí 
the variables are second-order Taylor polynomials: 

$(x,y) = A0 + Ai* + X2y + X3x
2 + X4y

2 + X5xy, $ = p,u,i/,T (8) 

The coeffícients X¿ are computed for each variable by using a least squares 
approximation in a cloud of six points located around the central one. Four out of 
these six points are chosen such that they are closest to the centrum and spanning the 
surrounding space as evenly as feasible. The fifth and sixth points are selected at random 
(see Figure 1). This random selection has some beneficial global effects: (a) it avoids 
global skewdness in the computation of the derivatives, (b) it has some stabilizing effects 
on the convergence process, and (c) it automatically generates the perturbation needed 
to start the vortex shedding process without the need for other numerical means. Time 
integration is explicit and follows a standard Lax-Wendroff scheme: 

j , fd<í>Y 1 íd2<í>Y 9 

^ = ^ + Ur + 2(^r , $ E f t " , I ' , r (9) 

where At is the numerical time integration step. The second-order derivative in expression 
(9) is evaluated by performing an additional time derivative in eqs. 1-4 leaving out the 
terms that contain second-order spatial derivatives. Finite point formulations are well 



suited to be used in combination with Lax-Wendroff time integration schemes because it 
is straightforward to compute higher order spatial derivatives by using expression (8). 

ARTIFICIAL DISSIPATION TERMS 

These terms are meant to stabilize the numerical convergence process when the 
mesh is not Cartesian, which is, unfortunately, the most common situation in industrial 
applications. They should be kept as simple as possible so that mínimum disturbances 
are introduced in the computed flow field. We have implemented a second-order and a 
fourth-order term in the continuity equation and a fourth-order term on each of the 
momentum and internal energy equations. The second-order operator L2k (O) at node 
k, has the form: 

£2*(*) = ¿ (*,--**). $ p,u,v, (10) 
!=1 

It is to be noted that summation in operator L2Í (*£) extends only to the first four 
points in the cloud, not to the full six points used for the least squares approximation. 
We have observed that this is enough to ensure algorithm stability and, in this way, we 
reduce the number of operations to be performed per iteration so computational time 
is reduced. The second-order artificial dissipation term OP2(p)k that we introduce in 
the continuity equation is 

2p 
OP2{p\=^L2k{p) (11) 

where 62p is an artificial dissipation parameter and At is the computational time step. 
The fourth-order operator L4k (O) at node k is obtained by repeated application of 
operator (11). Then, fourth-order artificial dissipation terms introduced in Eqs. (1)-
(4), (one in each equation) are 

OP4(<¡>)fe=^L4fe(<¡>), "J) — p, u, v, T (12) 

where S4¡j,, <J> = p,u, v, T, are the artificial viscosity parameters. It is to be noted that 
the same artificial viscosity parameter S4u is used for both the x and y momentum 
equations, although operators are different. Introduction of operators (11) and (12) 
into Eqs. (l)-(4) changes the order of these equations so that additional boundary 
conditions are needed. 

Inflow and outflow sections: 

l[OP2(p)]=0,l[OP2(«) o, lioPiv 0,^[OP2(T)} = 0 (13) 

Cylinder wall: 

d 
dn 

[OP2{p)\ = 0, [OP2{u)\ = 0, [OP2{y) 0, — [OP2(T)}=0 (14) 



Operator (11) has a pseudo-Laplacian form so that, in the case of a Cartesian 
mesh, second- and fourth-order dissipation terms could be approximated as 
follows: 

where íiis a typical distance within the cloud. Far away from the cylinder, where points 
are located far apart form each other, d could be large. To avoid this unwanted effect 
that could give rise to unreasonably large valúes of operators (15), artificial viscosity 
parameters S2p, S4p, S4u, and <54rhave been made to decrease monotonically away from 
the cylinder. In particular, they decrease inversely proportional to the typical cloud 
diameter. In this way, we do not only control behavior of the equations in the far field 
but also decrease the total amount of artificial damping implemented in the whole 
computational domain. 

VALIDATION AND SENSITIVITY ANALYSIS 

The results published by Bijl et al. [17] have been used for validation purposes. 
This choice is based on the following rationale: (a) these authors used a simple 
geometry; Le., a circular cylinder, (b) compressibility effects were relevant; Le., 
Mach number was 0.3, (c) they used five different meshes (number of elements 
ranged from 3,577 to 55,777) so their results could be considered grid converged, 
and (d) their numerical scheme was very different from the one we use since they 
implemented a cell centered finite volume scheme with fully implicit time integra-
tion. We have used three different computational domains, all of them of circular 
shape, whose main characteristics are given in Table 1 (recall that distances are made 
dimensionless by using the cylinder diameter). A first set of results obtained by 
changing grid and artificial viscosity parameters is presented in Table 2. 
Aerodynamics parameters (defined in the Nomenclature section) are the same as 
those used in Linares and Velazquez [12]. To allow for a better comparison between 
different cases, the valúes of the following parameters, see relations (15), are 
included in the table: 

S2pd
2 _S4pd

4 _S4ucf _S4Td4 

& P - - £ P &o--£T' &»—&> &T—Kr (16) 

where d is the mínimum distance between points (see fourth line in Table 1). 
The finest grid used by Bijl et al. [17] had 289 elements in the cylinder surface 

and the computational outer boundary was located at a distance of 20 diameters 
from the cylinder. Dimensionless distance between the cylinder wall and the first grid 
point was 1.0e-3. For this case, Bijl et al. [17] reported Cl m a x = 1.51 and S = 0.244. 
Our finest grid had 720 points in the cylinder surface, distance to the first node away 
from the wall was 4.3e-3, and the boundary of the computational domain was 
located 29 diameters away from the cylinder. In these conditions, our converged 
results (with regard to grid and artificial viscosity parameters) were Cl m a x =1-56 
and S = 0.232, which differs by a factor of 4 and 5%, respectively, from the ones 



Table 1 Definition of the three grids used for validation purposes 

Grid 1 Grid 2 Grid 3 

Points in the cylinder surface 
Diameter of the computational domain 
Total number of points 
Mínimum distance between points 
Máximum distance between points 

80 
58.8 
15,780 
0.0174 
2.09 

360 
58.8 
18,900 
0.0087 
2.09 

720 
58.8 
34,860 
0.0044 
2.09 

reported by Bijl et al. [17]. Sensitivity of the results with regard to time step is 
presented in Table 3. The criterion to make a fair comparison between cases has 
been to use a constant valué of £2p, S,4P, S,4u, a n d ^4TÍsee definition (16). Baseline case 
used for comparison has been case 11. It can be observed in Table 3 that Cd av, 
Cl max, a n d S remain basically unchanged (variations are smaller than 1 %) when the 
time step changes by a factor of 8. Summarizing information provided in Tables 1,2, 
and 3, it could be said that our solution is converged with regard to the artificial 
viscosity parameters and with regard to spatial and temporal discretization. Grid 2 
will be taken, for the remainder of this article, as the baseline. 

Another test of the solution robustness is presented in Table 4. Finite Point 
solvers are of interest, among other aspects, because they allow for the patching-up of 
regions with different densities of points. As it could be expected, sharp transitions are 
the most sensitive zones from the standpoint of algorithm stability, and it is within 
these transition regions where accuracy in the prediction of derivatives is poorest and 
artificial damping is most needed. For instance, the baseline grid 2 was made up of 
three patches: 

• Patch A: 21 rings of 360 points each (innermost patch: closest to the cylinder) 
• Patch B: 25 rings of 180 points each (intermedíate región) 
• Patch C: 57 rings of 120 points each (outermost patch: farthest away from the 

cylinder) 

In the sharp transition región from patch A to patch B, the ratio of máximum 
to mínimum distance was 2.45. A close-up view of this región is shown in the 
left-hand side subplot of Figure 2. Now, another computational domain was 
generated (grid 2-b) containing one additional very coarse narrow patch (120 points 
per ring) located in between patches A and B. In this way, máximum versus 
mínimum distance ratio within clouds in the transition región increased up to 3.70 
(50% more than in the baseline case). A detailed view of this modified grid 2-b is 
shown in the right-hand side subplot of figure 2. The size of the computational 
domain and the total number of points were the same in both grids. Now, Table 4 
presents the results obtained (cases 41 to 44), their comparison with baseline case 11, 
and the outcome of the sensitivity study with regards to the integration time 
step. Table 4 shows that a 50% coarsening of the transition región caused Cd avv 

to change from 1.50 to 1.40 (7% variation), C/_max from 1.46 to 1.36 (7% variation), 
and S from 0.235 to 0.229 (3% variation). Again, it could be observed that the 
results, in the modified grid 2-b, are converged with regard to the integration time 
step. 



Table 2 Computed averaged drag (Cd_av), peak lift (Cl_max), and Strouhal number (S) at Mach = 0.3 and Reynolds = 1200 for a series of different grids and artificial 
viscosity parameters 

Case key 
Grid 
At x le4 
S2p x le4 
Snp x le4 
<54„ x le4 
<54r x le4 
Í2P x le4 
Í4P x le9 
£4„ x le9 
f4r x le9 

£1V 

*-' max 

S 
Bijletal. [17], 

1 
1 
2 

100 
40 
40 
40 

150 
1800 
1800 
1800 
1.29 
1.15 
0.227 

finest grid 

2 
1 
2 

50 
20 
20 
20 
76 

900 
900 
900 

1.35 
1.28 
0.238 

3 
1 
2 

25 
10 
10 
10 
38 

450 
450 
450 

1.40 
1.37 
0.240 

*-""_av 

*— '_max 

s 

4 
1 
2 

12 
5 
5 
5 

19 
230 
230 
230 
FC 
FC 
FC 

11 
2 
1 

50 
20 
20 
20 
38 

120 
120 
120 

1.50 
1.46 
0.235 

12 
2 
1 

25 
10 
10 
10 
19 
58 
58 
58 

1.51 
1.51 
0.232 

13 
2 
1 

12.5 
5 
5 
5 

10 
29 
29 
29 
1.50 
1.50 
0.229 

14 
2 
1 
6.25 
2.5 
2.5 
2.5 
5 

14 
14 
14 
FC 
FC 
FC 

21 
3 
1 

200 
80 
80 
80 
38 
29 
29 
29 

1.55 
1.50 
).229 

22 
3 
1 

100 
40 
40 
40 
19 
14 
14 
14 

1.56 
1.58 
0.234 

23 
3 
1 

67 
30 
30 
30 
13 
10 
10 
10 

1.56 
1.57 
0.232 

24 
3 
1 

50 
20 
20 
20 
10 
7.2 
7.2 
7.2 
FC 
FC 
FC 

Not available 
1.51 
0.244 

Results reported by Bijl et al. [17] are included for comparison purposes. 



Table 3 Sensitivity of the results with regard to the computational time step 

Case key 
Grid 
At x le4 
S2p x le4 
S4p x le4 
84u x le4 
S4T x le4 
6 P x le4 
Í4P x le9 
Uu x le9 
Í4T x le9 
Cu a v 

r/ 
*^[ mas s 

11 
2 
1 

50 
20 
20 
20 
38 

120 
120 
120 

1.50 
1.46 
0.235 

31 
2 
2 

100 
40 
40 
40 
38 

120 
120 
120 

1.50 
1.46 
0.233 

32 
2 
4 

200 
80 
80 
80 
38 

120 
120 
120 

1.50 
1.47 
0.233 

33 
2 
8 

400 
160 
160 
160 
38 

120 
120 
120 

1.50 
1.47 
0.234 

34 
2 

16 
800 
320 
320 
320 
38 

120 
120 
120 
FC 
FC 
FC 

Table 4 Sensitivity of the results with regard to grid non-homogeneity and time step 

Case key 
Grid 
At x le4 
S2p x le4 
S4p x le4 
&,„ x le4 
S4T x le4 
6 P x le4 
Í4P x le9 
£4„ x le9 
(,4T x le9 
Cu a v 

*^[ mas 

s 

11 
2 
1 

50 
20 
20 
20 
38 

120 
120 
120 

1.50 
1.46 
0.235 

41 
2-b 

1 
50 
20 
20 
20 
38 

120 
120 
120 

1.40 
1.36 
0.229 

42 
2-b 

2 
100 
40 
40 
40 
38 

120 
120 
120 

1.40 
1.37 
0.229 

43 
2-b 

4 
200 

80 
80 
80 
38 

120 
120 
120 

1.40 
1.37 
0.229 

44 
2-b 

8 
400 
160 
160 
160 
38 

120 
120 
120 

1.40 
1.37 
0.229 

Figure 2. Close-up view of the points distribution in the baseline grid 2 (left) and in the modified grid 2-b (right). 



RESULTS 

The flow parameters that have been considered are Mach 0.4 and Reynolds 150. 
An ideal fluid has been modeled so that properties such as viscosity and thermal 
conductivity are assumed to be constant. This is certainly not appropriate when 
temperature variations are large, but this application case focuses on having a pre-
liminary understanding of the role that thermal energy and kinetic energy coupling 
play on vortex shedding behavior. All computation cases to be addressed in this 
section use grid 2 (see Table 1). Computational time step and artificial dissipation 
parameters are those used for previous case 11 (see Table 2). 

First Set of Results 

We start by implementing a constant temperature boundary condition: 

,t) = <2Q , V0, t (17) 

The azimuth angle 6 is measured counterclockwise from the positive horizontal 
axis (as in standard cylindrical coordinates, see Figure 1). The results obtained for the 
different temperature levéis are presented in Table 5. It could be observed that Cd 
depends very weakly on the wall temperature while Cl changes by a factor of the order 
of ±30-40% when the wall temperature is either doubled or halved. The variation on 
the Strouhal number is also small. Table 6 shows the results obtained when using a 
time dependent wall temperature defined as follows: 

Tw(t) =b0+bi sm(2Trt 2S) + b2 sin(27rZ S), V0 (18) 

Table 5 Results obtained for constant wall temperatures 

Case key 51 52 53 54 55 

Cd ¡ 

Cd_¡ 

Cl~ 

0.50 
1.45 
0.04 
0.73 
0.179 

0.75 
1.45 
0.03 
0.64 
0.177 

1.00 
1.44 
0.03 
0.56 
0.175 

1.25 
1.42 
0.02 
0.48 
0.171 

1.50 
1.39 
0.02 
0.40 
0.166 

Table 6 Results obtained when the prescribed thermal oscillation depends only on time 

Case 
key 61 62 63 64 65 66 71 72 73 74 75 76 

¿0 

¿i 

b2 

*-" ave 

*— "• span 

*-[ max 

s 

0.75 
0 

-0.25 
1.43 
0.08 
0.60 
0.177 

0.75 
0 

-0.50 
1.43 
0.13 
0.59 
0.177 

1.00 
0 

-0.25 
1.43 
0.05 
0.55 
0.175 

1.00 
0 

-0.50 
1.43 
0.08 
0.54 
0.175 

1.25 
0 

-0.25 
1.42 
0.05 
0.48 
0.171 

1.25 
0 

-0.50 
1.42 
0.08 
0.47 
0.171 

0.75 
-0.25 

0 
1.47 
0.11 
0.64 
0.177 

0.75 
-0.50 

0 
1.47 
0.24 
0.64 
0.177 

1.00 
-0.25 

0 
1.46 
0.08 
0.58 
0.175 

1.00 
-0.50 

0 
1.45 
0.14 
0.58 
0.175 

1.25 
-0.25 

0 
1.43 
0.07 
0.50 
0.171 

1.25 
-0.50 

0 
1.43 
0.13 
0.50 
0.171 



S is the vortex shedding Strouhal number oí the corresponding constant temperature 
case (Strouhal number oí Table 5). The forcing term associated to b\ in Eq. (18) has the 
drag frequency 2S, while the term associated to b2 has the lift frequency S. The results 
obtained could be summarized as follows: 

• The actual level oí the constant wall temperature boundary condition (cases 51 to 55) 
has a weak influence on drag and a strong influence on lift. Temperature changes oí 
the order oí ±50% cause Cd and Cl variations oí the order ±2% and ±30%, 
respectively. Strouhal number variations are also small (oí the order oí ±3%). 

• A wall temperature that pulsates at the lift frequency (cases 61 to 66) has rather small 
influence on both the average drag and the máximum lift, even if the amplitude of the 
pulsation is large (of the order of 50% of the mean valué). We observe, in these cases, that 
changes on CViare smaller than 2%, while changes on Cl are of the order of 6% at most. 

• When the wall temperature pulsates at the drag frequency (cases 71 to 76) the 
influence on average drag and máximum lift is also small. However, in this case, 
Cd variations around its average valué grow larger and are in the range of ±16% 
(case 72) to ±9% (case 76). It is to be noted that the amplitude of the Cd oscillations 
in the cases with constant wall temperature (cases 51 to 55) was 2% at most. 

These results suggest that lift control requires, in addition to time, a spatial (9) 
dependent temperature variation. In particular, the idea is to púlsate in opposite phase 
at the top and bottom of the cylinder to enhance the alternating vertical forcé 
generated by vortex shedding. 

Second Set of Results 

In accordance to the previous conclusión, we have now chosen the following 
space- and time-dependent functional behavior for the cylinder wall temperature 
(cases 81 to 88 in Table 7): 

Tw{6, t) = \+ci sin(27rz 2Sb) cos(0) + c2 sin(27rZ Sb) sin(0) (19) 

where we restrict ourselves to the case of average temperature equal to 1 and select Sb 
= 0.175, which is the vortex shedding Strouhal number of baseline case 53 with no 
thermal oscillation present (see Table 5). 

The following aspects regarding implementation of boundary condition (19) 
should be noted: (a) Computation of all cases 81 to 88 has started from the solution of 

Table 7 Results obtained when the prescribed thermal oscillation depends on both time and azimuth angle 

Case key 

Cl 

c2 

T 
+ nui l T 
+ m a x 
( ^ " ave 

^ " span 

*^< m a x 

s 

53 

0 
0 
1 
1 
1.44 

±0.03 
0.56 
0.175 

81 

0.5 
0 
0.5 
1.5 
1.45 

±0.22 
0.62 
0.175 

82 

-0.5 
0 
0.5 
1.5 
1.45 

±0.22 
0.62 
0.175 

83 

0 
0.5 
0.5 
1.5 
1.45 

±0.02 
0.74 
0.175 

84 

0 
-0.5 

0.5 
1.5 
1.45 

±0.02 
0.74 
0.175 

85 

0.5 
0.5 
0.375 
1.625 
1.44 

±0.22 
0.77 
0.175 

86 

0.5 
-0 .5 

0.375 
1.625 
1.44 

±0.22 
0.77 
0.175 

87 

-0.5 
0.5 
0.375 
1.625 
1.47 

±0.19 
0.77 
0.175 

88 

-0.5 
-0.5 

0.375 
1.625 
1.44 

±0.17 
0.77 
0.175 
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Figure 3. Illustration of the way chosen to switch the thermal oscillation on. 

baseline case 53. The thermal oscillation on the cylinder surface was switched on when 
the lift coefficient Cl in the upwards stroke was zero (see Figure 3). In this way we ensure 
that rwau = 1 when the thermal oscillation starts. (b) The term that contains eos (9) 
reaches its máximum and mínimum valúes at 6 = 0, •K, oscillates at the drag forcé baseline 
frequency 2S¡„ and modifies temperature mostly in the forward and backward regions of 
the micro-cylinder where pressure contribution to drag is higher. (c) The term that 
contains sin(0) reaches its máximum and mínimum valúes at 6 = TT/2, 3TT/2, oscillates at 
the lift forcé baseline frequency S¡„ and modifies temperature mostly in the upper and 
lower regions of the micro-cylinder where pressure contribution to lift is higher. 

The results obtained are presented in Table 7. Tmín and Tmax are the mínimum and 
máximum local wall temperatures obtained for the different combinations of the c\ and 
c2 parameters. Regarding these results, the following observations could be made: 

• Cases 81 and 82: surface temperature oscillation depends on cos(0) only. The ampli-
tude of the Cd oscillation is ±0.22 now, while this amplitude was ±0.03 in the baseline 
constant temperature case 53 and ±0.14 in case 74 with only time-dependent pulsa-
tion present. The time-averaged drag Cd ave did not change noticeably. The máx
imum lift Cl max increased to 0.62 now from the baseline valué of 0.56 (11 % up). The 
vortex shedding Strouhal number remained unaffected by the surface thermal 
oscillation. 

• Cases 83 and 84: surface temperature oscillation depends on sin(0) only. The 
amplitude of the drag coefficient Cd was not affected by this thermal oscillation. 
The time averaged drag Cd ave was not affected either. The máximum lift Cl max was 
0.74, up from 0.56 in the baseline case (32% increase). The Strouhal number was not 
affected by the thermal oscillation. 

• Cases 85 to 88: surface temperature oscillation depends on both cos(0) and sin(0). 
The amplitude of the drag coefficient Cíivaried between ±0.17 and ±0.22. The time 
averaged drag Cd ave was not affected by this thermal oscillation. The máximum lift 
C/max was 0.77, which represents a 38% increase over the baseline case. The 
Strouhal number was not affected by the thermal oscillation. 



When the prescribed surface temperature oscillates with the frequency oí the 
baseline lift and drag, aerodynamics forces can be modulated. In particular, lift 
amplitude could be increased by a factor oí 38% (from 0.56 to 0.77) and drag could 
be made to oscillate with the amplitude oí ±0.22 around its mean valué oí 1.44 (that is 
a variation oí ±15%). In all these cases, the observed vortex shedding frequency did 
not change when compared to the vortex shedding baseline frequency. 

We now investígate how sensitive the behavior just described is with regard to 
the local spatial details of the prescribed pulsation. To do so, we compute an addi-
tional case with the following boundary condition: 

dn 

Tw(6,t) = 1 -0.5sin(27rZ Sb), 

on 

Tw(6,t) = l+0.5sin(27rz Sb), 

ir n ir 
- T < é l < T 4 - - 4 

ir 3ir 

4 4 
3ir „ 5ir — < e < — 
4 - - 4 

5ir „ lir 

4 4 

(20) 

This boundary condition is a crude representation of the one used for case 84. In 
particular, we now púlsate with opposite time phase and constant spatial distribution 
at the top and bottom of the micro-cylinder while keeping adiabatic the forward and 
backward stagnation regions. In this case we obtain Cd = 1.45 ± 0.02, Cl m a x = 0.72, 
and S = 0.175, while the corresponding results of case 84 were Cd = 1.45 ± 0.02, 
Cl m a x = 0.74, and S = 0.175. Then, it could be said that the behavior of the 
aerodynamics coefficients (that are of a global nature) depends very weakly on the 
local details of the prescribed pulsation. 

Third Set of Results 

We now study the time evolution of surface pressure after the thermal oscillation 
has been switched on. As it has been said before, all computations 81 to 88 start from 
baseline computation 53 at the time instant when Cl is zero and stroking upwards (see 
Figure 3). Let us consider cases 83 and 84, which behave in a different way in the time 
instants that follow the switch from constant to pulsating wall temperature. In particular, 
temperature and pressure in case 83 tend to increase at the top of the cylinder (9 = ir 12) 
while decreasing at the bottom (9 = 3ir/2). That is, thermal oscillation 83 tends, in the 
initial time instants, to decrease Cl which is precisely the opposite of what the fluid is 
doing at that very moment. On the contrary, thermal oscillation in case 84 tends to 
increase Clin phase with fluid behavior. Figure 4 shows the time evolution of Cl for cases 
83 (solid line) and 84 (dashed line) after the temperature oscillation has been switched on. 
In this picture it could be observed that case 83 performs 17 vortex shedding cycles within 
the time span of 100 characteristic times while case 84 performs 18 cycles. The time 
history of the Strouhal number for case 83 (downwards pointing triangles) and case 84 
(upwards pointing triangles) is presented in Figure 5. There it can be seen that after about 
15 cycles, vortex shedding in both cases 83 and 84 occurs at the same frequency (Strouhal 
number equal to the baseline valué of 0.175). However, case 83 adjusts itself by passing 
through a series of shedding cycles characterized by a smaller Strouhal number. 
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Figure 4. Time evolution of Cl for case 83 (solid Une) and 84 (dashed Une). 
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Figure 5. Time history of the Strouhal number for case 83 (V) and 84 (A) 
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Figures 6 (case 83) and 7 (case 84) show the time evolution of wall temperature, 
density, pressure, and Cl. Valúes at the top of the cylinder (9 = TT/2) are shown in the 
left-hand side subplots, while results at the bottom (9 = 3TT/2) are presented in the 
right-hand side subplots. C/reaches its máximum valué in the oscillatory steady-state 
situation when pressure at the top of the cylinder (9 = TT/2) is mínimum. This mínimum 
valué of pressure is achieved by a combination of mínimum temperature and máx
imum density (see left-hand side subplots of Figures 6 and 7). The opposite behavior 
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happens at the bottom of the cylinder (9 = 3TT/2). Regarding the initial time instants of 
the oscillatory transient state, the temperature boundary condition of case 83 tends to 
genérate a combination of máximum temperature and mínimum density at the top of 
the cylinder that is the opposite of the long-term behavior. This means that the fluid 
needs to adjust itself during the oscillatory transient state. The adjustment comes in 
the shape of a (already mentioned) continuously changing vortex shedding frequency. 

Fourth Set of Results 

In cases 81 to 88, the wall temperature oscillation frequency was prescribed to be 
equal to the frequency of the baseline lift and drag (case 53). Now, we study flow 
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Figure 7. Case 84. Time evolution of Cl, Tvall, p^^u, and Pwan. Left-hand side plots: 9 = ir/2. Right-hand side 
plots: 9 = 3TT/2. 

behavior when this is no longer the case. In particular, we prescribe the thermal 
oscillation as follows: 

Tw(0, t) = 1 - 05 sin(27rz Sh F) sin(0) (21) 

where S¡, = 0.175 as before and T7 is a parameter that assumes the following valúes: 
1.20,1.10,0.91,0.83,0.71, and 0.56 (see Table 8). The Strouhal number history for all 
these cases is presented in the six subplots of Figure 8. We computed 500 character-
istics times in each simulation and this amounts to a number of vortex shedding cycles 
ranging from 80 to 90 depending on the case. The baseline Strouhal number £¿ = 0.175 
is plotted as a dash-dotted horizontal line in each subplot of Figure 8. The average 
Strouhal number for the last 60 cycles of each case is plotted as a solid horizontal line. 
Regarding these results, the following observations could be made: 



Table 8 Results obtained when the frequency of the thermal oscillation is allowed to change 

Case key 91 92 93 94 95 96 

F 
SbxF 

^av 

1Jspan 

1.2 
0.210 
0.177 
0.171-0.184 

1.1 
0.193 
0.180 
0.167-0.188 

1/1.1 
0.159 
0.159 
0 

1/1.2 
0.145 
0.172 
0.160-0.185 

1/1.4 
0.124 
0.174 
0.163-0.189 

1/1.8 
0.098 
0.174 
0.160-0.190 
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Figure 8. Time evolution of the Strouhal number for different valúes of the prescribed thermal oscillation 
frequency. 

• Cases with.F< 1. Ifi^is sufficiently cióse to 1 (for instance, case 93 withi7=0.91), 
the vortex shedding frequency follows the frequency of the prescribed thermal 
oscillation. In this case there is a full coupling between the vortex shedding 



frequency and the frequency of the forcing thermal oscillation. Smaller valúes of F 
lead to a different dynamic behavior; Le., the vortex shedding frequency is not 
constant and it changes from one cycle to the next. For case 94 (F = 0.83), time 
evolution of the Strouhal number follows a regular pattern around its mean valué. 
For case 95 (F = 0.71), the pattern loses regularity and, finally, for case 96 (F = 
0.56), the pattern becomes highly irregular. The average valué of the time-depen-
dent Stroudhal number depends on F. When _Fmoves away from its baseline valué 
of 1, the average Strouhal number also moves away from the baseline valué of 
0.175. However, if _Fkeeps decreasing, the average Strouhal number bounces back 
and gets closer to the baseline valué. For cases with F = 0.91, 0.83, 0.71, and 0.56 
(see Table 8) the average Strouhal numbers are 0.159, 0.172, 0.174, and 0.174, 
respectively. That is, when the forcing and baseline frequencies are strongly 
decoupled, the fluid reverts, on the average, to its natural vortex shedding 
frequency. 

• Cases with F > 1. We have found that these cases behave qualitatively like the 
ones already described with F < 1. The main difference is that Strouhal 
number follows a more regular pattern and the amplitude of the Strouhal 
oscillation is smaller. 

Summarizing, forcing a temperature oscillation whose frequency is different 
from the natural (baseline) vortex shedding frequency leads to a variety of 
different flow patterns. When the decoupling is weak, vortex shedding frequency 
follows the frequency of the thermal forcing oscillation. When differences 
between both frequencies are large, the flow tends, on the average, to revert 
back to its natural vortex shedding frequency but the changes from cycle to cycle 
are large. 

CONCLUSIONS 

We found that the prescribed spatial and temporal thermal oscillations at the 
surface of a micro-cylinder have a signifícant effect on the flow fíeld behavior. This 
behavior suggests that it might be worthwhile to explore the possibility of using 
thermal oscillations in MEMS to exert some kind of control on aerodynamics forces 
and vortex shedding frequencies. 

Lift and drag can be modulated to some extent when the frequency of 
the prescribed thermal oscillation is the same as the natural vortex shedding 
frequency of the problem with constant wall temperature. In some cases, we 
obtained valúes of Cl m a x 38% larger than in the baseline case and were able to 
genérate Cd variations of ±0.22 that are much larger than the corresponding base
line variations (±0.03). 

When frequency of the forcing thermal oscillation is different from the 
natural vortex shedding frequency of the problem, we found that two different 
types of behavior appear. If both frequencies are cióse to each other, vortex 
shedding takes place at the forcing thermal frequency (both phenomena are 
strongly coupled). If these two frequencies are located far apart, vortex shed
ding frequency changes from one cycle to the next and the average Strouhal 
number gets closer to the natural frequency (both phenomena are weakly 
coupled). 
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