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We study, numerically and analytically, a model of a one-dimensional array of carbon nanotube resonators in
a two-terminal configuration. The system is brought into resonance upon application of an ac signal superim-
posed on a dc bias voltage. When the tubes in the array are close to each other, electrostatic interactions
between tubes become important for the array dynamics. We show that both transverse and longitudinal
parametric resonances can be excited in addition to primary resonances. The intertube electrostatic interactions
couple modes in orthogonal directions and affect the mode stability.

DOI: 10.1103/PhysRevB.79.165418 PACS number�s�: 85.85.�j, 85.35.Kt

I. INTRODUCTION

During recent years, several experimental realizations of
nanoelectromechanical �NEM� resonators based on carbon
nanotubes �CNTs� or carbon nanofibers �CNFs� have been
demonstrated.1–6 Carbon nanotubes have established them-
selves as strong material candidates for use in NEM-
resonator systems, partly due to their favorable mechanical
properties7 such as low mass and high elastic modulus. Thus,
using CNTs or CNFs allows for operational frequencies of
NEM resonator that reach into the gigahertz regime. In the
most recent experiments, the long predicted high-quality fac-
tors on the order of Q�103 have finally been achieved. This
makes these resonators interesting from a technological point
of view with application areas such as tunable rf filters and
fast low-power switching elements.8–10 However, for such
applications, a major drawback is the high impedance levels
offered by single-nanotube devices. The ensuing low-power
transduction8 makes integration of such devices with current
state-of-the-art complementary metal-oxide semiconductor
�CMOS� technology difficult. One way to overcome this
problem is to construct devices based on parallel arrays. For
arrays it is desirable to know how interactions between ele-
ments affect the operation of devices. It is, for instance, im-
portant to know how closely spaced array members can be
placed without drastic changes in performance.

Apart from the technological incentive of studying micro-
electromechanical �MEM� and NEM arrays, the problem is
also of fundamental interest. The dynamic response of
coupled NEM- and MEM-resonator systems in combination
with nonlinearities is known to lead to unexpected and/or
unintuitive behavior. Examples are intrinsic localized
modes11–14 and mode synchronization.15,16 In addition, para-
metric resonances in MEM and NEM arrays have been stud-
ied both experimentally and theoretically.17–21 In those stud-
ies parametric response was induced by applying an ac-
voltage component between alternating beams in beam
arrays. Parametric resonances can be narrower than funda-
mental resonances and find use in, for instance, parametric
amplifiers.

In this paper we study theoretically a vertical one-
dimensional �1D� regular array of CNT or CNF resonators
�see Fig. 1�. This configuration is natural if one wishes to
make, for instance, a frequency-tunable rf filter and wishes to

overcome impedance mismatching problems.6,23 As in Ref. 6
this layout is suitable for capacitive actuation and transduc-
tion. When the resonators are not too widely separated, elec-
trostatic interactions between the tubes become important
and affect the dynamical response of the system. While the
system considered in this paper shares some features with
previously studied systems,17–21 there are several important
differences. Among them two are worthy of special attention.
First, all the tubes in the system are connected to the same
voltage source, containing both a dc and an ac component,
thereby eliminating the need for individual contacting of al-
ternating array members. This makes the interactions be-
tween tubes repulsive, rather than attractive. Second, in con-
trast to beams with rectangular cross sections, where the
characteristic vibration frequencies differ for vibrations in
different directions, CNTs or CNFs have a circular cross sec-
tion and motion in two dimensions plays an important role.

We find that the fundamental resonance, where the tubes
oscillate in unison toward the drain electrode, is not drasti-
cally affected by interactions. However, several other reso-
nances appear including longitudinal resonances, where the
tubes oscillate in the direction along the array. For small

FIG. 1. �Color online� Schematic layout of a vertically oriented
carbon nanotube NEM array. Through patterning of catalysts, regu-
lar one-dimensional arrays of carbon nanotubes or nanofibers can
be grown on top of an electrode �source�. A second electrode �drain�
is formed from a deposited layer at the same height as the tube tips.
Actuation and transduction of tube displacement are achieved
through electrostatic �capacitive� coupling between the tubes and
the drain electrode.
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arrays, these resonances have the form of hardening Duffing-
type resonances which develop into a band of resonances as
the array gets larger. Further, two parametric resonances are
present in the systems. Both transverse and longitudinal mo-
tions may be parametrically excited, with both multiple
branches and complex bifurcation structures for the larger
arrays. The electrostatic coupling between tubes also affects
the stability of the longitudinal motion, which becomes un-
stable due to parametric excitation of transverse oscillations.

We begin this paper by presenting, in Sec. II, a simplified
lumped electromechanical model to derive the main qualita-
tive features of the system. Then, in Sec. III, based on nu-
merical integration of the equations of motion, the general
features of the dynamic response of a one-dimensional CNT
resonator array are discussed. To better understand the main
characteristics of this response, we focus on the smallest pos-
sible array �two tubes� in Sec. IV. The two-tube system is
treated both numerically and analytically. We derive fre-
quency response equations and analyze stability for the vari-
ous resonances using perturbation theory. These analytical
results are found to work as good approximations for finding
the loci of the resonances also in larger systems. This treat-
ment is then followed up, in Sec. V, with a discussion of how
the response changes as the arrays become larger before con-
cluding in Sec. VI.

II. MODEL

For an array consisting of N tubes we denote the coordi-
nates of the central axis of each �undeformed� tube by Xi

0

= �Xi ,Yi�, where i=1, . . . ,N. For the vibrations of the beams
we consider only excitations of the fundamental flexural
modes for which a lumped model is suitable.9,22 Describing
the position of the tip of the cantilevers by the coordinates
Xi, we use the following equation of motion:23

miẌi + mi�Ẋi + mi�0i
2 �Xi − Xi

0� = Fi
el, i = 1, . . . ,N .

Here mi are the effective masses of the tubes and �0i are the
natural resonance frequencies. For tubes with circular cross
sections these values are given by23 mi=�AiLi /5.684 and
�0i=3.516Li

−2�EIi /�iAi, where Ai is the cross-sectional area,
Ii is the moment of inertia, E is Young’s modulus, and Li is
the length of tube number i. We have also introduced a vis-
coelastic damping term �i for each tube to account for me-
chanical losses. In the absence of a gaseous medium sur-
rounding the tubes, the main sources of dissipation are
external, such as clamping losses and Ohmic losses, and we
will use a typical Q of 100. We note here that numerical
studies24 show that the intrinsic losses in carbon nanotube
cantilever resonators are at least 1 order of magnitude
smaller.

Aside from elastic forces, external electrostatic forces Fi
el

act on the tubes. These forces depend on the geometry as
well as the instantaneous charge distributions on the tubes.
To find the exact charge distributions on the tubes is a hard
problem. Numerical simulations using the finite element
method and boundary element method of electrostatically in-
teracting tubes25 reveal that the charge is mainly located at

the tip of the tubes. Furthermore, the main contributions to
the bending moments arise from forces close to the tube tips.
Thus to model the electrostatic forces we make the simplified
assumption that the charge Qi on each tube is concentrated to
a conducting spherical shell located at the tip of each tube.
The model we consider is one of conducting spheres, at-
tached with springs to their equilibrium positions and able to
move in the xy plane. The drain electrode, which can be
taken to be at zero potential, is modeled as an infinite con-
ducting plane. There is also the possibility of actually having
metallic grains on top of the tubes. In plasma chemical-vapor
deposition �CVD� growth of CNT or CNF from Ni catalysts,
tip growth results in the metallic catalysts residing at the tips
of the tubes.

In general, the full charge distribution, rather than the
total charge, on each sphere is needed to find the forces.
Provided that the intertube separation and the tube-drain
separations are larger than the tube diameters, the dominant
contribution to the electrostatic forces comes from the mono-
pole contributions of these charge distributions. Restricting
attention to this case the electrostatic free energy of the sys-
tem �the tubes being biased by the common time-dependent
voltage V�t�� is

Fel = Fself + Fint − V�t��
i=1

N

Qi,

where the electrostatic self-energy is

Fself =
1

4��0
�
i=1

N
Qi

2

Di

and the total electrostatic interaction energy is

Fint =
1

4��0
�
i=1

N

�
j�i

N
QiQj

�Xi − X j�
−

1

8��0
�
i,j=1

N
QiQj

�Xi� − X j�
.

Here Xi�= �−Xi ,Yi� denote the images of Xi= �Xi ,Yi� in the
plane X=0. The charge distribution in the array is then found
from solving the linear system �Fel /�Qi=0, after which the
electrostatic forces may be found as Fi=−�xi

Fel.
We consider now a uniform system with identical tubes,

i.e., Di=D, �0i=�0, �i=�, and mi=m. Rescaling the coordi-
nates to dimensionless form according to Xi=Dxi, Yi=Dyi
yields

ẍi + �ẋi + �0
2�xi − xi

0� =
1

mD
Fi

el. �1�

In the same way we rescale electric quantities through intro-
ducing a unit voltage V0, i.e., V=vV0, Qi=qi4��0DV0, and
the electrostatic charging energy EC=4��0DV0

2. The corre-
sponding dimensionless electrostatic free energy fel
	Fel /EC is then

fel = �
i=1

N

qi�qi − v� + �
i=1

N

�
j�i

N
qiqj

�xi − x j�
−

1

2 �
i,j=1

N
qiqj

�xi� − x j�
.

In order to study the response of the system we solve
dynamic equation �1� numerically using a velocity Verlet al-
gorithm. In Sec. III we present the main qualitative features
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of the mechanical response of the system to a harmonic driv-
ing field. A more quantitative discussion is then carried out in
Secs. IV and V.

III. RESPONSE TO HARMONIC DRIVING

Figure 2 shows the response of an array with 100 tubes
when it is driven with an ac signal on the source in combi-
nation with a static dc bias voltage V�t�=V0+V1 cos��Dt� �dc
bias voltage V0=12 V, ac signal V1=2 V�. The tubes are
each 1 �m long with a diameter of 25 nm. The distance to
the drain electrode is 150 nm. Plotted are the two orthogonal
components of the mechanical energy corresponding to
transverse �blue solid line� and longitudinal vibrations �red
dashed lines�. The energy is scaled in terms of the dimen-
sionless units introduced above with a time scale set to
t0=0.1 ns.

In the top panel the spacing between the tubes is 200 nm.
Clearly visible is the primary transverse resonance �blue
lines� where all the tubes oscillate in phase with each other.
This mode corresponds to the resonance of a single nano-
tube. A band of longitudinal modes can be seen �dashed line�
just above 100 MHz. In the middle panel the tubes are more
closely spaced �150 nm� and two additional resonances are
present. The transverse resonance �around 190 MHz� is a
parametrically excited resonance where each tube oscillates
with half the driving frequency. In this resonance neighbor-
ing tubes oscillate with opposing phases �optical mode�.
Above 210 MHz is another parametric resonance in the more
closely spaced arrays. This is a parametric resonance of the
band of longitudinal modes of the array. In the bottom panel
the spacing has been narrowed down further to 125 nm. The
parametric resonances are now stronger and the primary
transverse resonance has become hysteretic. The appearance
of hysteresis can here be understood by considering the at-
tractive force between a tube and the drain electrode. For
widely separated tubes, each tube is attracted by its own
image potential alone, while for more closely spaced tubes,
the images charges from neighboring tubes contribute to this
force.

In Sec. IV we show how these resonances and their main
characteristics can be understood from analyzing a two-
oscillator array. Then, in Sec. V we study, numerically, how
the response changes qualitatively as the size of the arrays
grow larger. The parametric resonances, both the transverse
and the longitudinal, show a complex behavior with multiple
bifurcation points. These are not shown in the panels of Fig.
2 but will be addressed further in Sec. V.

IV. TWO OSCILLATORS: CASE STUDY

In this section we study the simplest case, namely, an
array consisting of only two cantilevers with identical physi-
cal parameters. This case can be analyzed analytically and
serves to validate numerical modeling and provides insights
for larger arrays.

We take the positions of the undeflected tubes to be x1
0

= �x0 ,y0� and x2
0= �x0 ,−y0�, where x0	0 and y0�0, and the

drain to be the plane x=0. Introducing the variables x


=x1
x2 and y=y1−y2, we have the equations of motion

ẍ+ + �ẋ+ + �0
2�x+ − 2x0� = ��0

2v2
 g1
2

�x+ + x−�2 +
g2

2

�x+ − x−�2

− 2g1g2
x+

�x+
2 + y2�3/2� , �2�

ẍ− + �ẋ− + �0
2x− = ��0

2v2
 g1
2

�x+ + x−�2 −
g2

2

�x+ − x−�2

+ 2g1g2
x−

�x−
2 + y2�3/2� , �3�
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FIG. 2. �Color online� Time-averaged mechanical energy for a
harmonically driven array with 100 tubes. The blue solid lines rep-
resent the mechanical energy stored in transverse modes �vibrations
toward the drain electrode�. The red dashed lines represent the en-
ergy stored in longitudinal modes �vibration along the array axis�.
Arrows indicate the directions of transitions in the hysteretic region.
Top: intertube separation of 200 nm. Middle: intertube separation of
150 nm. Bottom: intertube separation of 125 nm.
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ÿ + �ẏ + �0
2�y + 2y0� = 2��0

2v2g1g2
 y

�x−
2 + y2�3/2�

− 
 y

�x+
2 + y2�3/2� . �4�

The relevant electromechanical coupling constant is �
=EC /Emech=EC /mD2�0

2. In terms of numbers �
�10−3V0

2L3D−5 if length is measured in nm and the tubes are
assumed solid with a Young’s modulus of 1 TPa.26 The func-
tions g1,2 are found by solving exactly the electrostatic prob-
lem and are given by

g1 = �x+ + x−�
�x+ − x−��� − 2� − 1

�x+
2 − x−

2���2 − 4� − 4x+ − 1
,

g2 = �x+ − x−�
�x+ + x−��� − 2� − 1

�x+
2 − x−

2���2 − 4� − 4x+ − 1
,

where � is defined as

� =
1

�x−
2 + y2

−
1

�x+
2 + y2

= �− − �+.

A spectrum that reveals the most important features of the
response to a harmonic ac drive on the gate is shown in Fig.
3. This figure was obtained from numerical integration of the
dynamic equations for a system with the following param-
eters: tube diameter D=25 nm; tube lengths L=1 �m; bare
quality factor 0=100; tube positions �X0 ,Y0�= �
−150,62.5� nm; Young’s modulus E=1 TPa; and tube den-
sity �=1.2 g /cm3. The applied voltages to the system were
V0=12 V and V1=2 V.

The figure was obtained by sweeping the drive frequency
both upward and downward. On the vertical axis of Fig. 3
the dimensionless average mechanical energy of the tubes is
shown. The motions in the longitudinal direction �y direc-
tion� and the transverse direction �x direction� have been
separated for clarity. Both the transverse response �blue line�
and the longitudinal response �red� show three main peaks
each. We have labeled these peaks A, A�, and C and B, B�,
and D, respectively. Hysteresis in the frequency plane is
present in peaks B, C, and D �for peak C the hysteresis is too
narrow to be clearly seen in Fig. 3�. In Secs. IV A–IV D
below we treat each of these resonances in more detail. Note
that in these subsections labels follow the labeling of the
peaks in Fig. 3.

We begin by determining the stationary points. For small
deflections around equilibrium it is sufficient to keep only
the dominant terms in 1 /x+ and 1 /y which yield the dynamic
equations

ẍ+ + �ẋ+ + �0
2�x+ − 2x0� = �

�0
2v2

2 
 1

x+
2 −

x+

�x+
2 + y2�3/2� ,

ÿ + �ẏ + �0
2�y + 2y0� = �

�0
2v2

2 
−
1

y2 −
y

�x+
2 + y2�3/2� . �5�

In the limit of large intertube separation �y→�� one retains
the result of noninteracting tubes, whereas the limit x→�

reduces the problem to one in the y direction only. The equa-
tions also decouple in the limit of small �x+� �recall that both
x+ and y are negative� due to screening of the electrostatic
interaction between the tubes by the drain electrode. System
�5� can be used to determine the stationary deflections x+�t�
=xs and y�t�=ys in the absence of an ac component. These
time-independent solutions are found by solving the system

xs = 2x0 +
�

2

 1

xs
2 −

xs

�xs
2 + ys

2�3/2� ,

ys = − 2y0 +
�

2

−

1

ys
2 −

ys

�xs
2 + ys

2�3/2� . �6�

For small biases v0 �i.e., ��1� we solve perturbatively in �
and get

xs � 2x0
1 −
�

16y0
3 ��0

−3 + �0�� ,

ys � − 2y0
1 +
�

16y0
3 �1 − �0�� , �7�

where �0= �x0 /y0� and �0	�1+�0
2�−3/2. The term �0 ac-

counts for mutual screening of the tubes �if �0= �x0 /y0�→0
then �0→1�. This approximation is valid for small static
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FIG. 3. �Color online� Average mechanical energy of a two-tube
system in response to harmonic driving. Blue solid lines: average
mechanical energy stored in vibrations in the x direction. Red
dashed lines: average mechanical energy stored in vibrations in the
y direction. Both upward and downward sweeps in frequency were
made. A and A�: fundamental resonances in the x direction. Both
tubes oscillate in phase toward the drain electrode �x+ resonance�. B
and B�: fundamental resonances in the y direction. The tubes oscil-
late with opposing phases in the direction parallel to the drain elec-
trode �y resonance�. C: parametric resonance in the x direction. The
tubes oscillate with opposite phases at half the driving frequency in
the direction toward drain electrode �x− resonance�. D: parametric
resonances in the y direction. The tubes oscillate with opposing
phases at half the driving frequency in the direction parallel to the
drain electrode �y resonance�.
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deflections and far away from snap-in �the tubes making con-
tact with the drain�. Note that system �7� rests on the ap-
proximations �1 /x+��1 and �1 /y��1. This is consistent with
the approximation of only keeping the monopole contribu-
tion to the total charge distribution on the tube tips.

A. Fundamental transverse resonance (x+ resonance)

In the fundamental transverse resonances �A and A� in
Fig. 3� the tubes oscillate in phase with each other. Neither of
these resonances differs appreciably in nature from those of
single-tube systems. The subharmonic arises from the double
frequency component of the driving occurring due to the v2

term. The main resonance tunes downward in frequency with
increasing bias and has a Duffing-type nonlinearity of the
softening kind. We omit the analysis of this resonance in this
paper since it has been already thoroughly studied previously
in the literature in conjunction with single-cantilever resona-
tors �see, for instance, Ref. 23�.

B. Fundamental longitudinal resonance (y resonance)

The fundamental y resonance �resonance B in Fig. 3� has
the shape of a Duffing resonance with a hardening nonlin-
earity. A clearer view of the resonance is seen in the inset of
Fig. 4. In this figure a false color plot of the mechanical
energy in the primary longitudinal resonance �y resonance�

as a function of bias voltage �vertical axis� and drive fre-
quency �horizontal axis� is shown. The figure was created
sweeping the frequency downward. Clearly visible is the up-
ward tuning of resonance frequency with increasing bias and
the sharp onset of resonance at the bifurcation point. The
inset shows the response along the 9 V bias cross section
�along the dotted line�. The thick black curves are the results
from numerical simulations of dynamic equation �1�. The
solid black line corresponds to downward frequency sweep,
while the dashed line corresponds to upward frequency
sweep.

The characteristics of the fundamental y resonance can be
found using perturbation theory. Considering this resonance
we take x+=xs and assume x−=0. When x−=0 the product
g1g2 simplifies to

g1g2 =
1

�� + 2 + x+
−1�2 . �8�

For small oscillations we may further set

1/�xs
2 + y2 � 1/�xs

2 + ys
2 = � . �9�

To obtain an estimate of the parametric dependence of the
resonance character, we analyze the system using the method
of averaging28 by making the ansatz y�t�=ys+Y�t�cos��Dt�
in response to a drive given by v�t�2�v0

2�1+2� cos��Dt

+���. Assuming �Ẏ /Y���0, the differential equation for the
amplitude Y is

ys = − 2y0 −
�

2
K0�Y,ys� ,

Ẏ = �0�
�

2
sin � �K2�Y,ys� − K0�Y,ys�� −

1

2
�Y ,

Y�D = Y�0 +
1

2
�0��K1 + � cos � �K0 + K2�� . �10�

Here

Kn�Y,ys� 	
2

�


0

2�

d� cos n�
A2�1 + �3y3�

�ys + Y cos � − A�2 , �11�

with A	�2+xs
−1−��−1.

For small oscillation amplitudes where the response does
not bifurcate, we solve the system to first order in � in the
limit Y →0. For the amplitude Y and the center of resonance
�c

�y�, we get

Y =
�0���1 − �0�

8y0
2���D − �c

�y��2 +
�2

4

,

�c
�y�

�0
= 1 +

�

16y0
3
1 + �1

2
�0

2 − 1��0
5/3� . �12�

Equation �12� is useful for estimating the center frequency
even for large oscillations as can be seen in Fig. 4, where
�c

�y� obtained from Eq. �12� is drawn as the solid white line.

FIG. 4. �Color online� False color plot of mechanical energy of
the primary longitudinal resonance �y resonance� as a function of
bias voltage �vertical axis� and drive frequency �horizontal axis�.
The figure was created by sweeping the frequency downward. The
solid white line corresponds to expression �12� for the central fre-
quency �c

�y�. Sweeping the frequency downward results in an abrupt
change in the response at the bifurcation frequency �B

�y� �the high-
frequency edge of the large amplitude �red� region�. The dashed
white line shows the bifurcation point found from solving fre-
quency response equation �13�. The inset shows the response along
the cross section at a bias of 9 V �along the dotted line�. The thick
black curves come from numerical simulations, whereas the dash-
dotted blue lines are solutions to frequency response equation �13�.
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As the drive gets stronger bifurcation occurs �see Fig. 3� and
the shape of the resonance is found from solving the fre-
quency response equation

�0
2�2�2 =

�2Y2

�K2 − K0�2 +
�2Y��D − �0� − �0�K1�2

�K0 + K2�2 . �13�

The blue dash-dotted lines in Fig. 4 depict the resonances
obtained from Eq. �13�, showing good agreement for small
amplitudes. The locus of the bifurcation point �B

�y� can also
be determined from solving Eq. �13�, and this solution for
�B

�y� is shown as the white dashed line in Fig. 4.
Whereas both the location of the resonance and the bifur-

cation point can be estimated using Eq. �10�, this is not true
for finding the extent of the hysteresis. The destabilization of
the high-amplitude branch is connected with an instability
toward resonance of the x− mode. The process of destabili-
zation is depicted in Fig. 5, where the entire time evolutions
of the trajectories of the tubes are shown. Starting in panel
�A�, the system is in the high-amplitude branch. The insta-
bility toward resonance of the x− mode causes an increase in
motion in the transverse direction �panels �B� and �C��. De-
cay to the lower branch �panel �F�� occurs through irregular
motion of the tubes �panels �D� and �E��. The location where
the high-amplitude branch of the y resonance becomes un-
stable can be found analytically using perturbation theory. In
Fig. 6 the region of instability toward parametric excitation
of the x− resonance is shown as the red dash-dotted line. As
can be seen, a good estimate of the locus of the destabiliza-
tion can be determined. The perturbative analysis is found in
the Appendix.

C. Instability toward parametric resonance (x− resonance)

We now turn our attention to the parametric resonance of
the x− mode �resonance C in Fig. 3�. Writing out explicitly
the right-hand side of equation of motion �3�, we have

ẍ− + �ẋ− + �0
2x− = − 2x−�0

2�1 + 2� cos��Dt��F�x−� , �14�

with

F = �� 2xs�� − 2�2 − 2�� − 2�
��xs

2 − x−
2���2 − 4� − 4xs − 1�2 −

g1g2

�x−
2 + ys

2�3/2� .

The right-hand side is proportional to x− characteristic for a
parametric drive. A simple parametrically driven harmonic
oscillator

ẍ + �ẋ + �0
2x = �0

2K�1 + 2� cos��Dt��x

will be unstable27 if �D
− 	�D	�D

+ , where

�D

 = �0
2�1 − K 
� K2

1 − K
�2 − 0

−2�, 0 = �0/� ,

�15�

provided the discriminant is positive, i.e., ���1−K / �0K�.
To find the point of instability we keep only the lowest-order
term in x− in Eq. �14�. This gives

K = 2�
�2 − �0��2 + �s

3�xs + �s
3

xs
2��0 + 2 + xs

−1�2 , �16�

where xs and ys are the stationary points, �s	xs /ys, and
�0=−�+−y−1. A comparison between numerical simulations
and the region of instability is shown in Fig. 7. For small
biases the agreement between theory and numerics is good,
while it deviates for larger biases. This deviation is due to
approximate relations �7� for finding xs and ys.

For larger amplitudes we must consider the full equation
of motion �14�. Introducing action angle coordinates x−
=X�t�cos���t�� and ẋ−=−X�t�� sin���t��, and expanding F
in a Fourier series

F�x−� = F�X cos �� = a0/2 + �
n=1

�

an cos n� ,
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FIG. 5. Mechanism for destabilization of the high-amplitude
branch of the fundamental y resonance �resonance B in Fig. 3�. The
figure shows the time evolutions of the trajectories of the tubes in
the xy plane during destabilization. Initially the tubes are executing
high-amplitude motion in the y direction �panel �A��. The coupling
to the motion in the x direction causes instability of the x− mode,
which starts to grow �panel �B��. After having reached high ampli-
tude in both x and y directions �panel �C��, irregular motion ensues
before the motion finally settles in the low-amplitude branch of the
y resonance �panel �F��.
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we obtain after averaging out fast variables the autonomous
system

Ẋ = X
�
�0

2�a4 − a0�
2�

sin � −
1

2
�� ,

�̇ = � + �
�0

2�a0 + 2a2 + a4�
2�

cos � ,

� = �0
2�1 + a0 + a2.

Here � is the relative phase of oscillation with respect to the
drive. We note that in the limit X→0 we have a2 ,a4=0 and
a0=K. A comparison between the results of perturbation
theory and numerical simulation is shown in Fig. 8. Here the
mechanical energy in the parametric x− resonance is shown
for a bias of V0=14 V �black solid line is the downward
frequency sweep and dashed line is the upward frequency
sweep�. The red dash-dotted line is the result of solving the
frequency response equation

�2�0
2

�2 =
�2

�a4 − a0�2 +
��D − 2��2

�a0 + 2a2 + a4�2 . �17�

While agreement between perturbation theory and numer-
ics is good, it does not work well close to the point of insta-
bility of the upper branch. Here, there is noise in the curve
obtained from numerical simulations. This noise comes from
coupling to the longitudinal mode. The inset of Fig. 8 shows
how the average energy stored in transverse �blue curve� and
longitudinal modes �red curve� vary in time. The curves have
been displaced for clarity and the red curve is magnified 500
times. While the energy transferred to the longitudinal mode
is very small compared to the energy in the transverse mode,
the excited longitudinal vibrations have great impact on the
transverse vibrations.
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FIG. 6. �Color online� Fundamental y resonance along the
dashed line in Fig. 4. The blue solid lines were obtained from solv-
ing Eq. �13�, while the black dashed lines are from numerical simu-
lations. Above the red dash-dotted line, perturbation theory predicts
the fundamental longitudinal resonance to be unstable toward para-
metric excitation of the x− resonance. The point of destabilization of
the upper branch occurs where the dash-dotted red line and the
upper blue line cross.

FIG. 7. �Color online� False color plot of the mechanical energy
in the parametric x− resonance �resonance C in Fig. 3� as a function
of bias voltage �vertical axis� and drive frequency �horizontal axis�.
The dashed white line denotes the region of instability according to
Eqs. �15� and �16�.
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FIG. 8. �Color online� Closeup of the response of the parametric
x− resonance �cross section at V0=14 V in Fig. 7�. The resonance
has the characteristics of a parametrically driven Duffing resonator
with a hardening nonlinearity. Near the point of instability of the
upper branch, coupling to the longitudinal mode causes beats where
energy is transferred between transverse and longitudinal modes
periodically in time. The black curves are from numerical simula-
tions, while the red dash-dotted curves come from solving fre-
quency response equation �17�. The inset shows the average me-
chanical energy stored in transverse and longitudinal modes as
function of time. The red curve, showing energy for the longitudinal
mode, has been magnified 500 times and vertically displaced for
clarity.
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D. Parametric longitudinal resonance (y resonance)

Finally we study the conditions for observing the para-
metric longitudinal resonance �resonance D in Fig. 3�. As in
the case of the parametric resonance in the transverse direc-
tion, the region of instability in the frequency plane toward
parametric resonance in the y direction is determined by Eq.
�15�. Starting from Eq. �4� and making again the approxima-
tions in Eqs. �8� and �9�, we find

K � − 2�A2
�3 −
2

�ys − A�3� �
�

ys
3
1 +

1

2
�s� . �18�

A comparison between numerical simulations and the region
of instability is shown in Fig. 9. The figure was created
sweeping the frequency downward and the bifurcation edge
is visible as the sharp transition between dark �blue� and
bright �red�. For small biases the agreement between theory
and numerics is good, while it deviates for larger biases. This
deviation is again due to using approximate relations �7� to
find xs and ys.

As in Secs. IV A–IV C we may use perturbation theory to
study the large amplitude response of the parametric reso-
nance. Assuming y�t�=ys+Y cos��Dt /2� and v�t�2�v0

2�1
+2� cos��Dt+���, the frequency response equation can be
derived,

Y2�1 +
�K1

Y
−

�D
2

4�0
2�2

�K1 + K3�2 = �2�2 −
�D

2 Y2

4�0
20

−2�K3 − K1�2 , �19�

tan � =
�Y�D�K1 + K3�

�K3 − K1����0
2 − �D

2 /4�Y − �0
2�K1�

, �20�

where Kn are given by Eq. �11�. A comparison between per-
turbation theory and numerical simulations is shown in the

inset of Fig. 9. Again agreement is good but fails to predict
where the upper branch becomes unstable. The destabiliza-
tion of the parametric y resonance occurs in the same way as
the fundamental y resonance, i.e., through parametric excita-
tion of the x− mode, and can be analyzed along the lines of
reasoning in the Appendix.

V. SEVERAL OSCILLATORS

Having treated the two-oscillator system in some detail,
we now move on to describe how the system response
changes with increasing system size. For this we use the
same system parameters �geometry and bias voltages� as
those used to obtain Fig. 3 and only change the number of
tubes in the array. We have done detailed simulations for
systems with 4, 8, and 16 tubes and the corresponding fre-
quency responses are shown in Figs. 10–12.

The fundamental transverse resonance is not markedly af-
fected by the increasing array size. This is expected since
here all tubes oscillate in phase with each other. The funda-
mental longitudinal resonance is however strongly affected,
with the single hysteretic peak from the two-tube system
developing into a broad band of excited oscillation modes.
The presence of this band is reflected also in the longitudinal
parametric resonances, where the development of band struc-
ture is present in terms of multiple branches and bifurcations
in the response. This type of behavior has been seen in para-
metrically driven NEM and MEM arrays.18 Also for the
larger arrays large amplitude excitations of longitudinal os-
cillations can be destabilized due to parametric excitation of
transverse modes. In Fig. 12 two particular such points are
marked with black circles. At these points the excitation of
the transverse modes became so strong that snap-to-contact
occurred.

Also the parametric transverse resonance shows the de-
velopment of a band structure. In contrast to the fundamental

FIG. 9. �Color online� False color plot of the mechanical energy
in the parametric longitudinal resonance �y resonance� as a function
of bias voltage �vertical axis� and drive frequency �horizontal axis�.
The dashed white line denotes the region of instability according to
Eqs. �15� and �18�. The inset shows the response along the cross
section at 9 V bias �dotted line�. The thick black curves come from
numerical simulations, and the solid blue lines are solutions to the
frequency response Eq. �19�.
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FIG. 10. �Color online� Response of a four-tube system with the
same physical parameters as the one in Fig. 3. The inset shows a
closeup of the parametric transverse resonance with the directions
of the transitions in the frequency plane indicated by arrows.
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resonance where this band structure is not accessible, several
branches can be reached through parametric excitation. In
Figs. 10–12 the insets show closeups of the parametric trans-
verse resonances.

While more and more modes appear as the arrays get
larger, one feature is common to all the systems. This feature
is the noisy region around 195 MHz. In this region, energy is
transferred between transverse and longitudinal modes just
as in the case of the two-tube system �see Fig. 8� but without
destabilizing the transverse motion.

As for the location of the resonances in the voltage-
frequency plane, these do not differ appreciably from the
two-tube system. The perturbative formulas derived in Sec.
IV can be used to estimate if and where the system will be
unstable to a certain resonance.

VI. CONCLUSIONS

In order to investigate the effects of electrostatic interac-
tions between carbon nanotubes in NEM-resonator arrays,
we have studied a simple model both analytically and nu-
merically. We have found that, apart from excitation �funda-
mental and parametric� of a band of longitudinal modes,
parametric excitation of transverse modes is also possible.
With increasing number of resonators, these resonances be-
come successively more complicated and exhibit rich behav-
ior with several overlapping hysteresis loops, bifurcation
points, etc. The transverse modes are also responsible for
destabilizing the longitudinal modes at high amplitudes and
may lead to snap-to-contact. Also, the parametrically excited
transverse modes show regions of irregular behavior coming
from coupling between transverse and longitudinal modes.
We have shown that the features of the response of 1D arrays
can be understood qualitatively through studying the sim-
plest possible array, a two-tube system. Also quantitative pre-
dictions based on the two-tube system can be used to obtain
estimates of regions of instability toward parametric reso-
nances and to estimate frequency tuning.

From a technological point of view, these estimates can
help in designing array resonator systems to avoid unwanted
resonances while maintaining a high packing density. Utiliz-
ing parametric resonances could also be a path to further
increase the operation frequency in technical applications.
Moreover by tuning the bias voltages the width of the region
of instability can be tuned to an arbitrarily narrow frequency
domain. So far, only uniform arrays have been studied. For
applications, disorder must be accounted for and further
studies are needed.
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APPENDIX: DESTABILIZATION OF PRIMARY
y RESONANCE

We here give a brief derivation of the criteria for destabi-
lization of the fundamental longitudinal mode through para-
metric excitation of the transverse x− mode of the two-tube
system. Following the same lines, the stability of the para-
metric longitudinal excitation can be analyzed.

The longitudinal vibrations are destabilized by the x−
mode, which has the equation of motion

ẍ− + �ẋ− + �0
2x− = ��0

2v2
 g1
2

�x+ + x−�2 −
g2

2

�x+ − x−�2

+ 2g1g2
x−

�x−
2 + y2�3/2� .

For small oscillations of the x− mode, the right-hand side can
be approximated for large amplitudes Y of the y mode �re-
calling that y=ys+Y cos �Dt�, yielding the equation
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FIG. 11. �Color online� Response of an eight-tube system with
the same physical parameters as the one in Fig. 3. The inset shows
a closeup of the parametric transverse resonance with the directions
of the transitions in the frequency plane indicated by arrows. In the
area denoted noisy region, the coupling to longitudinal motion
causes the amplitude of transverse motion to oscillate in time.
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FIG. 12. �Color online� Response of a 16-tube system with the
same physical parameters as the one in Fig. 3. The black dots indi-
cate that when the parametric longitudinal resonance became un-
stable, strong excitations of transverse modes occurred that lead to
snap-to-contact of the system. The inset shows a closeup of the
parametric transverse resonance. In the area around 195 MHz ir-
regular behavior with high-amplitude motion occurs.
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ẍ− + �ẋ− + �0
2x− = − x−F�t� ,

where

F�t� 	
2�A2�0

2v0
2�1 + 2� cos��Dt + ���

�ys + Y cos��Dt���Y cos��Dt� + ys − A�2 , �A1�

and we have defined A	�2+1 /xs−��−1 and �	�xs
2

+ys
2�−1/2. Changing to action angle variables �x−

=X�t�cos���t�� and ẋ−=−X�t�� sin���t��� and averaging over
fast variables results in the autonomous system

Ẋ = X
 �sin 2�F�t��

2��0
2 + c0

−
�

2� ,

�̇ = ��0
2 + c0 +

1

2��0
2 + c0

�cos 2�F�t�� ,

where the brackets denotes the averaging �·�	�2��−1�0
2�·d�,

and we have expanded F�t� in a Fourier series F�t�
=�ncnein�Dt. At the onset of the destabilizing x− resonance
we have �̇=�D and �=�Dt+�. Evaluating the averages and
setting c2= �c2�ei�, one finds

Ẋ = X
�c2�
sin�2� − ��

2��0
2 + c0

−
�

2� ,

�D − ��0
2 + c0 =

1

2��0
2 + c0

�c2�cos�2� − �� .

The region of driving frequencies where the high-amplitude
branch of the y mode can be destabilized by the x− mode can

then be found as �D
destab−	�D	�D

destab+, with

�D
destab
 = 
��0

2 + c0 
� �c2�2

4��0
2 + c0�

−
�2

4
� .

Using expression �A1� the Fourier coefficients c0 and c2 can
be evaluated exactly:

c0

�0
2 = 2�
Y + 2�A − ys�� cos �

Y�− Y2 + �A − ys�2
−

Y + 2�ys cos �

Y�− Y2 + ys
2

+
A�A − ys� + 2AY� cos �

�− Y2 + �A − ys�2�3/2 � , �A2�

c2

�0
2 = 2�
 �Y2 + �A − ys�ys + A�2Y�� cos ��

�− Y2 + �A − ys�2�3/2

− 2
Y�A − ys�ys − �ysY

2 − 2�A + ys��A − ys�2�� cos �

Y3�− Y2 + �A − ys�2 �
+ 
 �Y2 − 2ys

2��Y − 2ys� cos ��

Y3�− Y2 + ys
2

+
4A2� cos �

Y3 � . �A3�

After solving the frequency response equation for the y reso-
nance, Y and cos � can be found and the expressions can be
evaluated, thus determining whether or not parametric exci-
tation of the x− mode will occur.
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