419 research outputs found

    Ultrafast Excited-state Proton Transfer Processes: Energy Surfaces and On-the-fly Dynamics Simulations

    Get PDF
    The excited-state intramolecular proton transfer (ESIPT) is reviewed for several benchmark systems [o-hydroxybenzaldehyde (OHBA), salicylic acid and 2-(2′-hydroxyphenyl)-benzothiazole (HBT)] in order to verify the applicability of the time-dependent density functional theory (TDDFT) and the resolution-of-the-identity approximate second-order coupled cluster (RI-CC2) methods. It was found that these approaches are very well suited for the description of ESIPT processes. A comparative investigation of previous and new excited-state dynamics simulations is performed for HBT, 10-hydroxybenzo[h]quinoline (HBQ), and [2,2′-bipyridyl]-3,3′-diol (BP(OH)2). The time scale for the ESIPT process in these systems ranges in the time interval of 30−40 fs for HBT and HBQ and amounts to about 10 fs for the first proton transfer step in BP(OH)2. The dynamics simulations also show that the proton transfer in HBT is strongly supported by skeletal modes and the proton plays a rather passive role, whereas in HBQ a semipassive mechanism is found due to its increased rigidity in comparison to HBT. The special role of the double proton transfer in BP(OH)2 is discussed as well

    Cycloaddition of Strained Cyclic Alkenes and Ortho-Quinones: A Distortion/Interaction Analysis

    Get PDF
    The chemistry of strained unsaturated cyclic compounds has experienced remarkable growth in recent years via the development of metal−free click reactions. Among these reactions, the cycloaddition of cyclopropenes and their analogues to ortho-quinones has been established as a highly promising click reaction. The present work investigates the mechanism involved in the cycloaddition of strained dienes to ortho-quinones and structural factors that would influence this reaction. For this purpose, we use B97D density functional theory calculations throughout, and for relevant cases, we use spin component−scaled MP2 calculations and single−point domain-based local pair natural orbital coupled cluster (DLPNO-CCSD(T)) calculations. The outcomes are analyzed in detail using the distortion/interaction model, and suggestions for future experimental work are made

    Resonances in a two-dimensional electron waveguide with a single delta-function scatterer

    Full text link
    We study the conductance properties of a straight two-dimensional electron waveguide with an s-like scatterer modeled by a single delta-function potential with a finite number of modes. Even such a simple system exhibits interesting resonance phenomena. These resonances are explained in terms of quasi-bound states both by using a direct solution of the Schroedinger equation and by studying the Green's function of the system. Using the Green's function we calculate the survival probability as well as the power absorption and show the influence of the quasi-bound states on these two quantities.Comment: 5 pages, 6 figures, to be published in Physical Review

    Lasing of donor-bound excitons in ZnSe microdisks

    Full text link
    Excitons bound to flourine atoms in ZnSe have the potential for several quantum optical applications. Examples include optically accessible quantum memories for quantum information processing and lasing without inversion. These applications require the bound-exciton transitions to be coupled to cavities with high cooperativity factors, which results in the experimental observation of low-threshold lasing. We report such lasing from fluorine-doped ZnSe quantum wells in 3 and 6 micron microdisk cavities. Photoluminescence and selective photoluminescence spectroscopy confirm that the lasing is due to bound-exciton transitions.Comment: 4 pages, 3 figures; introduction rewritte

    The Generality of the GUGA MRCI Approach in COLUMBUS for Treating Complex Quantum Chemistry

    Get PDF
    The core part of the program system COLUMBUS allows highly efficient calculations using variational multireference (MR) methods in the framework of configuration interaction with single and double excitations (MR-CISD) and averaged quadratic coupled-cluster calcu- lations (MR-AQCC), based on uncontracted sets of configurations and the graphical unitary group approach (GUGA). The availability of analytic MR-CISD and MR-AQCC energy gradients and analytic nonadiabatic couplings for MR-CISD enables exciting applications including, e.g., investigations of π-conjugated biradicaloid compounds, calculations of multitudes of excited states, development of dia- batization procedures, and furnishing the electronic structure information for on-the-fly surface nonadiabatic dynamics. With fully vari- ational uncontracted spin-orbit MRCI, COLUMBUS provides a unique possibility of performing high-level calculations on compounds containing heavy atoms up to lanthanides and actinides. Crucial for carrying out all of these calculations effectively is the availability of an efficient parallel code for the CI step. Configuration spaces of several billion in size now can be treated quite routinely on stan- dard parallel computer clusters. Emerging developments in COLUMBUS, including the all configuration mean energy multiconfiguration self-consistent field method and the graphically contracted function method, promise to allow practically unlimited configuration space dimensions. Spin density based on the GUGA approach, analytic spin-orbit energy gradients, possibilities for local electron correlation MR calculations, development of general interfaces for nonadiabatic dynamics, and MRCI linear vibronic coupling models conclude this overview

    Kinetics of the Strain-Promoted Oxidation-Controlled Cycloalkyne-1,2-quinone Cycloaddition: Experimental and Theoretical Studies

    Get PDF
    Stimulated by its success in both bioconjugation and surface modification, we studied the strain-promoted oxidation-controlled cycloalkyne-1,2-quinone cycloaddition (SPOCQ) in three ways. First, the second-order rate constants and activation parameters (ΔH⧧) were determined of various cyclooctynes reacting with 4-tert-butyl-1,2-quinone in a SPOCQ reaction, yielding values for ΔH⧧ of 4.5, 7.3, and 12.1 kcal/mol, for bicyclo[6.1.0]non-4-yne (BCN), cyclooctyne (OCT), and dibenzoazacyclooctyne (DIBAC), respectively. Second, their reaction paths were investigated in detail by a range of quantum mechanical calculations. Single-configuration theoretical methods, like various DFT and a range of MP2-based methods, typically overestimate this barrier by 3-8 kcal/mol (after inclusion of zero-point energy, thermal, and solvation corrections), whereas MP2 itself underestimates the barrier significantly. Only dispersion-corrected DFT methods like B97D (yielding 4.9, 6.4, and 12.1 kcal/mol for these three reactions) and high-level CCSD(T) and multireference multiconfiguration AQCC ab initio approaches (both yielding 8.2 kcal/mol for BCN) give good approximations of experimental data. Finally, the multireference methods show that the radical character in the TS is rather small, thus rationalizing the use of single-reference methods like B97D and SCS-MP2 as intrinsically valid approaches

    From Au-Thiolate Chains to Thioether Sierpiński Triangles: The Versatile Surface Chemistry of 1,3,5-Tris(4-Mercaptophenyl)Benzene on Au(111)

    Get PDF
    Self-assembly of 1,3,5-tris(4-mercaptophenyl)benzene (TMB) – a three-fold symmetric, thiol functionalized aromatic molecule – was studied on Au(111) with the aim to realize extended Au-thiolate linked molecular architectures. The focus lay on resolving thermally activated structural and chemical changes by a combination of microscopy and spectroscopy. Thereby Scanning Tunneling Microscopy provided submolecularly resolved structural information, while the chemical state of sulfur was assessed by X-ray Photoelectron Spectroscopy. Directly after room temperature deposition only less well ordered structures were observed. Mild annealing promoted the first structural transition into ordered molecular chains, partly organized in homochiral molecular braids. Further annealing led to self-similar Sierpiński triangles, while annealing at even higher temperatures again resulted in mostly disordered structures. Both the irregular aggregates observed at room temperature and the chains were identified as metal-organic assemblies, whereby two out of the three intermolecular binding motifs are energetically equivalent according to Density Functional Theory simulations. The emergence of Sierpiński triangles is driven by a chemical transformation, i.e. the conversion of coordinative Au-thiolate to covalent thioether linkages, and can be further understood by Monte Carlo simulations. The great structural variance of TMB on Au(111) can on one hand be explained by the energetic equivalence of two binding motifs. On the other hand, the unexpected chemical transition even enhances the structural variance and results in thiol-derived covalent molecular architectures
    • …
    corecore