39 research outputs found

    Interspecific competition impacts the occupancy and range limits of two ptarmigan species along the elevation gradient in Norway

    Get PDF
    Many mountain species are expected to respond to climate change through upslope shifts of their range limits, but competition may restrict or alter this response. Under traditional range-limit theory, it is expected that lower-elevation species are better competitors than closely related higher-elevation species. However, recent work finds that this prediction is often unmet. We investigated evidence for the impact of competition during breeding season on the elevational range limits of a pair of closely related bird species, willow ptarmigan Lagopus lagopus and rock ptarmigan L. muta, in mainland Norway. The species share overlapping ranges that loosely divide slightly upslope from the treeline ecotone, with willow ptarmigan generally occupying lower sites and rock ptarmigan occupying higher sites. We used multi-species occupancy models to test four competing hypotheses for how competition may affect the range limit between willow ptarmigan and rock ptarmigan: 1) asymmetric competition that restricts the lower range limit of rock ptarmigan; 2) asymmetric competition that restricts the upper range limit of willow ptarmigan; 3) condition-specific competition that restricts both species’ range limits; and 4) range limits unaffected by competition. We found evidence for a negative pairwise interaction between the two species. Changes in interaction strength along the elevation gradient suggested evidence for condition-specific competition. However, a strong positive correlation between rock ptarmigan and higher-elevation habitat resulted in a highly asymmetric outcome, where the upper range limit of willow ptarmigan was restricted but rock ptarmigan occupancy was fairly independent of willow ptarmigan. This outcome is opposite to the prediction of traditional range-limit theory and may suggest a greater climate threat to willow ptarmigan than has been previously projected. Thus, our results demonstrate the importance of considering biotic interactions at both the higher and lower ends of species’ range limits along elevation gradients. elevation gradient, interspecific competition, occupancy, ptarmigan, range limitspublishedVersio

    Covariation in population trends and demography reveals targets for conservation action

    Get PDF
    Wildlife conservation policies directed at common and widespread, but declining, species are difficult to design and implement effectively, as multiple environmental changes are likely to contribute to population declines. Conservation actions ultimately aim to influence demographic rates, but targeting actions towards feasible improvements in these is challenging in widespread species with ranges that encompass a wide range of environmental conditions. Across Europe, sharp declines in the abundance of migratory landbirds have driven international calls for action, but actions that could feasibly contribute to population recovery have yet to be identified. Targeted actions to improve conditions on poor-quality sites could be an effective approach, but only if local conditions consistently influence local demography and hence population trends. Using long-term measures of abundance and demography of breeding birds at survey sites across Europe, we show that co-occurring species with differing migration behaviours have similar directions of local population trends and magnitudes of productivity, but not survival rates. Targeted actions to boost local productivity within Europe, alongside large-scale (non-targeted) environmental protection across non-breeding ranges, could therefore help address the urgent need to halt migrant landbird declines. Such demographic routes to recovery are likely to be increasingly needed to address global wildlife declines.Peer reviewe

    An assessment of relative habitat use as a metric for species' habitat association and degree of specialization

    Get PDF
    Corrigendum: Ecological Indicators, Volume 137, April 2022, Article number 108627, https://doi.org/10.1016/j.ecolind.2022.108627.In order to understand species' sensitivity to habitat change, we must correctly determine if a species is associated with a habitat or not, and if it is associated, its degree of specialization for that habitat. However, definitions of species' habitat association and specialization are often static, categorical classifications that coarsely define species as either habitat specialists or generalists and can fail to account for potential temporal or spatial differences in association or specialization. In contrast, quantitative metrics can provide a more nuanced assessment, defining species' habitat associations and specialization along a continuous scale and accommodate for temporal or spatial variation, but these approaches are less widely used. Here we explore relative habitat use (RHU) as a metric for quantifying species' association with and degree of specialization for different habitat types. RHU determines the extent of a species' association with a given habitat by comparing its abundance in that habitat relative to its mean abundance across all other habitats. Using monitoring data for breeding birds across Europe from 1998 to 2017; we calculate RHU scores for 246 species for five habitat types and compared them to the literature-based classifications of their association with and specialization for each of these habitats. We also explored the temporal variation in species' RHU scores for each habitat and assessed how this varied according to association and degree of specialization. In general, species' RHU and literature-derived classifications were well aligned, as RHU scores for a given habitat increased in line with reported association and specialization. In addition, temporal variation in RHU scores were influenced by association and degree of specialization, with lower scores for those associated with, and those more specialized to, a given habitat. As a continuous metric, RHU allows a detailed assessment of species' association with and degree of specialization for different habitats that can be tailored to specific temporal and/or spatial requirements. It has the potential to be a valuable tool for identifying indicator species and in supporting the design, implementation and monitoring of conservation management actions.Peer reviewe

    Temperature synchronizes temporal variation in laying dates across European hole-nesting passerines

    Get PDF
    Identifying the environmental drivers of variation in fitness-related traits is a central objective in ecology and evolutionary biology. Temporal fluctuations of these environmental drivers are often synchronized at large spatial scales. Yet, whether synchronous environmental conditions can generate spatial synchrony in fitness-related trait values (i.e., correlated temporal trait fluctuations across populations) is poorly understood. Using data from long-term monitored populations of blue tits (Cyanistes caeruleus, n = 31), great tits (Parus major, n = 35), and pied flycatchers (Ficedula hypoleuca, n = 20) across Europe, we assessed the influence of two local climatic variables (mean temperature and mean precipitation in February-May) on spatial synchrony in three fitness-related traits: laying date, clutch size, and fledgling number. We found a high degree of spatial synchrony in laying date but a lower degree in clutch size and fledgling number for each species. Temperature strongly influenced spatial synchrony in laying date for resident blue tits and great tits but not for migratory pied flycatchers. This is a relevant finding in the context of environmental impacts on populations because spatial synchrony in fitness-related trait values among populations may influence fluctuations in vital rates or population abundances. If environmentally induced spatial synchrony in fitness-related traits increases the spatial synchrony in vital rates or population abundances, this will ultimately increase the risk of extinction for populations and species. Assessing how environmental conditions influence spatiotemporal variation in trait values improves our mechanistic understanding of environmental impacts on populations

    Inter‐assemblage facilitation: the functional diversity of cavity‐producing beetles drives the size diversity of cavity‐nesting bees

    No full text
    Inter‐specific interactions are important drivers and maintainers of biodiversity. Compared to trophic and competitive interactions, the role of non‐trophic facilitation among species has received less attention. Cavity‐nesting bees nest in old beetle borings in dead wood, with restricted diameters corresponding to the body size of the bee species. The aim of this study was to test the hypothesis that the functional diversity of cavity‐producing wood boring beetles ‐ in terms of cavity diameters ‐ drives the size diversity of cavity‐nesting bees. The invertebrate communities were sampled in 30 sites, located in forested landscapes along an elevational gradient. We regressed the species richness and abundance of cavity nesting bees against the species richness and abundance of wood boring beetles, non‐wood boring beetles and elevation. The proportion of cavity nesting bees in bee species assemblage was regressed against the species richness and abundance of wood boring beetles. We also tested the relationships between the size diversity of cavity nesting bees and wood boring beetles. The species richness and abundance of cavity nesting bees increased with the species richness and abundance of wood boring beetles. No such relationship was found for non‐wood boring beetles. The abundance of wood boring beetles was also related to an increased proportion of cavity nesting bee individuals. Moreover, the size diversity of cavity‐nesting bees increased with the functional diversity of wood boring beetles. Specifically, the mean and dispersion of bee body sizes increased with the functional dispersion of large wood boring beetles. The positive relationships between cavity producing bees and cavity nesting bees suggest that non‐trophic facilitative interactions between species assemblages play important roles in organizing bee species assemblages. Considering a community‐wide approach may therefore be required if we are to successfully understand and conserve wild bee species assemblages in forested landscapes

    Pushy males and choosy females: courtship disruption and mate choice in the lekking great snipe

    No full text
    We studied the effects of male disruptive behaviour on female mate choice and male mating success in the great snipe, Gallinago media, a lekking bird. Harassment from neighbouring males, a widespread behaviour in lekking animals, was the most prevalent cause of females leaving a male territory. Several lines of evidence show that females did not prefer to mate with males able to protect them from harassment. Males that obtained mating success were no less likely to suffer disruptions and females were no less likely to be disrupted when with their preferred male. Females returned to the male they later mated with, despite being repeatedly chased away by neighbours. The probability that an individual female returned and solicited mating from a male was 15 times higher for the male she was chased away from compared to the neighbour that chased her away. Females returned as often or more to the territory owner after being disrupted, compared to after leaving the territory without being harassed. Our results suggest that female great snipes are extremely choosy, but also that females do not gain direct benefits (harassment avoidance) by mating with certain males. Females appear to have neither direct nor indirect preferences for dominance that could give them such benefits: females appeared choosy despite, not because of, harassment. If females gain indirect benefits (genetically superior offspring) by being choosy, this is also likely to be unrelated to any dominance among males

    Background radiation dose-rates to non-human biota in a high mountain habitat in Norway

    No full text
    Determination of background radiation dose-rates is important in the process of assessing risks to the environment from exposure to human activities both in terms of deriving the incremental dose-rate and as a point of reference for evaluating the significance of the exposure level. A consideration of the available literature on naturally occurring radionuclides in wild plants and animals quickly illustrates a paucity of data coverage in numerous cases. Most notable is the lack of comprehensive information for the important dose-forming radionuclides such as 210Po and 210Pb. In order to collate data concerning these radioisotopes for components of the ecosystem, field work was conducted in a semi-natural, mountainous location in central Norway. Preliminary (since no correction was made for ingrowth from 210Pb) whole-body activity concentrations of 210Po in 2 species of small mammal were commensurate with activity concentrations reported for reindeer muscle sampled at proximate locations, falling at a level of some 10s of Bq kg-1 by fresh weight. Statistical analyses of the data showed that bank vole and shrew 210Po data constitute different populations with different mean ranks. Unweighted dose-rates attributable to the presence of internally distributed 210Po were calculated to be 0.07 ÎŒGy h-1 for Bank vole
    corecore