17 research outputs found

    Impact of mineral dust on short wave and long wave radiation: evaluation of different vertically resolved parameterization sin 1-D radiative transfer computations

    Get PDF
    Aerosol radiative properties are investigated in southeastern Spain during a dust event on 16–17 June 2013 in the framework of the ChArMEx/ADRIMED (Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) campaign. Particle optical and microphysical properties from ground-based sun/sky photometer and lidar measurements, as well as in situ measurements on board the SAFIRE ATR 42 French research aircraft, are used to create a set of different levels of input parameterizations, which feed the 1-D radiative transfer model (RTM) GAME (Global Atmospheric ModEl). We consider three datasets: (1) a first parameterization based on the retrievals by an advanced aerosol inversion code (GRASP; Generalized Retrieval of Aerosol and Surface Properties) applied to combined photometer and lidar data, (2) a parameterization based on the photometer columnar optical properties and vertically resolved lidar retrievals with the two-component Klett–Fernald algorithm, and (3) a parameterization based on vertically resolved optical and microphysical aerosol properties measured in situ by the aircraft instrumentation. Once retrieved, the outputs of the RTM in terms of both shortwave and longwave radiative fluxes are compared against ground and in situ airborne measurements. In addition, the outputs of the model in terms of the aerosol direct radiative effect are discussed with respect to the different input parameterizations. Results show that calculated atmospheric radiative fluxes differ no more than 7 % from the measured ones. The three parameterization datasets produce a cooling effect due to mineral dust both at the surface and the top of the atmosphere. Aerosol radiative effects with differences of up to 10 W m−2 in the shortwave spectral range (mostly due to differences in the aerosol optical depth) and 2 W m−2 for the longwave spectral range (mainly due to differences in the aerosol optical depth but also to the coarse mode radius used to calculate the radiative properties) are obtained when comparing the three parameterizations. The study reveals the complexity of parameterizing 1-D RTMs as sizing and characterizing the optical properties of mineral dust is challenging. The use of advanced remote sensing data and processing, in combination with closure studies on the optical and microphysical properties from in situ aircraft measurements when available, is recommended.This work is part of the ChArMEx project supported by CNRS-INSU, ADEME, Météo-France, and CEA in the framework of the multidisciplinary program MISTRALS (Mediterranean Integrated STudies at Regional And Local Scales; http://mistrals-home.org/, last access: 15 January 2018). Lidar measurements were supported by the ACTRIS (Aerosols, Clouds, and Trace Gases Research Infrastructure Network) Research Infrastructure Project funded by the European Union's Horizon 2020 research and innovation program under grant agreement no. 654109. The Barcelona team acknowledges the Spanish Ministry of Economy and Competitiveness (project TEC2015-63832-P) and EFRD (European Fund for Regional Development); the Department of Economy and Knowledge of the Catalan autonomous government (grant 2014 SGR 583) and the Unidad de Excelencia Maria de Maeztu (project MDM-2016-0600) financed by the Spanish Agencia Estatal de Investigación. The authors also thank the Spanish Ministry of Science, Innovation and Universities (ref. CGL2017-90884-REDT). This work was also supported by the Juan de la Cierva-Formación program (grant FJCI-2015-23904). Paola Formenti and Cyrielle Denjean acknowledge the support of the French National Research Agency (ANR) through the ADRIMED program (contract ANR-11-BS56-0006)

    Analyzing the turbulent planetary boundary layer by remote sensing systems: the Doppler wind lidar, aerosol elastic lidar and microwave radiometer

    Get PDF
    he planetary boundary layer (PBL) is the lowermost region of troposphere and is endowed with turbulent characteristics, which can have mechanical and/or thermodynamic origins. This behavior gives this layer great importance, mainly in studies about pollutant dispersion and weather forecasting. However, the instruments usually applied in studies of turbulence in the PBL have limitations in spatial resolution (anemometer towers) or temporal resolution (instrumentation aboard an aircraft). Ground-based remote sensing, both active and passive, offers an alternative for studying the PBL. In this study we show the capabilities of combining different remote sensing systems (microwave radiometer – MWR, Doppler lidar – DL – and elastic lidar – EL) for retrieving a detailed picture on the PBL turbulent features. The statistical moments of the high frequency distributions of the vertical wind velocity, derived from DL, and of the backscattered coefficient, derived from EL, are corrected by two methodologies, namely first lag correction and -2=3 law correction. The corrected profiles, obtained from DL data, present small differences when compared with the uncorrected profiles, showing the low influence of noise and the viability of the proposed methodology. Concerning EL, in addition to analyzing the influence of noise, we explore the use of different wavelengths that usually include EL systems operated in extended networks, like the European Aerosol Research Lidar Network (EARLINET),This work was supported by the Andalusia Regional Government through project P12-RNM-2409 and by the Spanish Agencia Estatal de Investigación (AEI) through projects CGL2016-81092-R and CGL2017-90884-REDT. We acknowledge the financial support by the European Union’s Horizon 2020 research and innovation program through project ACTRIS-2 (grant agreement no. 654109)

    Evaluation of night-time aerosols measurements and lunar irradiance models in the frame of the first multi-instrument nocturnal intercomparison campaign

    Get PDF
    The first multi-instrument nocturnal aerosol optical depth (AOD) intercom-parison campaign was held at the high-mountain Iza ̃na Observatory (Tener-ife, Spain) in June 2017, involving 2-minutes synchronous measurements fromtwo different types of lunar photometers (Cimel CE318-T and Moon Preci-sion Filter Radiometer, LunarPFR) and one stellar photometer. The Robotic Lunar Observatory (ROLO) model developed by the U.S. Geological Survey(USGS) was compared with the open-access ROLO Implementation for Moonphotometry Observation (RIMO) model. Results showed rather small differ-ences at Iza ̃na over a 2-month time period covering June and July, 2017(±0.01 in terms of AOD calculated by means of a day/night/day coherencetest analysis and±2 % in terms of lunar irradiance). The RIMO model hasbeen used in this field campaign to retrieve AOD from lunar photometricmeasurements. No evidence of significant differences with the Moon’s phase angle wasfound when comparing raw signals of the six Cimel photometers involved inthis field campaign.The raw signal comparison of the participating lunar photometers (Cimeland LunarPFR) performed at coincident wavelengths showed consistent mea-surements and AOD differences within their combined uncertainties at 870 nmand 675 nm. Slightly larger AOD deviations were observed at 500 nm, point-ing to some unexpected instrumental variations during the measurement pe-riod.Lunar irradiances retrieved using RIMO for phase angles varying between0◦and 75◦(full Moon to near quarter Moon) were compared to the irradi-ance variations retrieved by Cimel and LunarPFR photometers. Our resultsshowed a relative agreement within±3.5 % between the RIMO model andthe photometer-based lunar irradiances.The AOD retrieved by performing a Langley-plot calibration each nightshowed a remarkable agreement (better than 0.01) between the lunar pho-tometers. However, when applying the Lunar-Langley calibration using RIMO,AOD differences of up to 0.015 (0.040 for 500 nm) were found, with differ-ences increasing with the Moon’s phase angle. These differences are thoughtto be partly due to the uncertainties in the irradiance models, as well asinstrumental deficiencies yet to be fully understood.High AOD variability in stellar measurements was detected during thecampaign. Nevertheless, the observed AOD differences in the Cimel/stellarcomparison were within the expected combined uncertainties of these twophotometric techniques. Our results indicate that lunar photometry is amore reliable technique, especially for low aerosol loading conditions.The uncertainty analysis performed in this paper shows that the com-bined standard AOD uncertainty in lunar photometry is dependent on thecalibration technique (up to 0.014 for Langley-plot with illumination-basedcorrection, 0.012-0.022 for Lunar-Langley calibration, and up to 0.1 for the 2 Sun-Moon Gain Factor method). This analysis also corroborates that theuncertainty of the lunar irradiance model used for AOD calculation is withinthe 5-10 % expected range.This campaign has allowed us to quantify the important technical diffi-culties that still exist when routinely monitoring aerosol optical propertiesat night-time. The small AOD differences observed between the three typesof photometers involved in the campaign are only detectable under pristinesky conditions such as those found in this field campaign. Longer campaignsare necessary to understand the observed discrepancies between instrumentsas well as to provide more conclusive results about the uncertainty involvedin the lunar irradiance model

    Extreme, wintertime Saharan dust intrusion in the Iberian Peninsula: Lidar monitoring and evaluation of dust forecast models during the February 2017 event

    Get PDF
    The research leading to these results has received funding from the H2020 program from the European Union (grant agreement no. 654109, 778349) and also from the Spanish Ministry of Industry, Economy and Competitiviness (MINECO, ref. CGL2013-45410-R, CGL2016-81092-R, CGL2017-85344-R, TEC2015-63832-P), the Spanish Ministry of Science, Innovation and Universities (ref. CGL2017-90884-REDT); the CommSensLab "Maria de Maeztu" Unity of Excellence (ref. MDM-2016-0600) financed by the Spanish Agencia Estatal de Investigación. Co-funding was also provided by the European Union through the European Regional Development Fund (ref. POCI-01-0145-FEDER-007690, ALT20-03-0145-FEDER-000004, ALT20-03-0145-FEDER-000011); by the Andalusia Regional Government (ref. P12-RNM-2409); by the Madrid Regional Government (projects TIGAS-CM, ref. Y2018/EMT-5177 and AIRTEC-CM, ref. P2018/EMT4329); by the University of Granada through “Plan Propio. Programa 9 Convocatoria 2013” and by the Portuguese Foundation for Science and Technology and national funding (ref. SFRH/BSAB/143164/2019). The BSC-DREAM8b and NNMB/BSC-Dust (now NMMB-MONARCH) model simulations were performed by the Mare Nostrum supercomputer hosted by the Barcelona Supercomputer Center (BSC). S. Basart acknowledges the AXA Research Fund for supporting aerosol research at the BSC through the AXA Chair on Sand and Dust Storms Fund, as well as the InDust project (COST Action CA16202). The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and/or READY website (http://www.ready.noaa.gov) used in this publication.An unprecedented extreme Saharan dust event was registered in winter time from 20 to 23 February 2017 over the Iberian Peninsula (IP). We report on aerosol optical properties observed under this extreme dust intrusion through passive and active remote sensing techniques. For that, AERONET (AErosol RObotic NETwork) and EARLINET (European Aerosol Research LIdar NETwork) databases are used. The sites considered are: Barcelona (41.38°N, 2.17°E), Burjassot (39.51°N, 0.42°W), Cabo da Roca (38.78°N, 9.50°W), Évora (38.57°N, 7.91°W), Granada (37.16°N, 3.61°W) and Madrid (40.45°N, 3.72°W). Large aerosol optical depths (AOD) and low Ångström exponents (AE) are observed. An AOD of 2.0 at 675 nm is reached in several stations. A maximum peak of 2.5 is registered in Évora. During and around the peak of AOD, AEs close to 0 and even slightly negative are measured. With regard to vertically-resolved aerosol optical properties, particle backscatter coefficients as high as 15 Mm−1 sr−1 at 355 nm are recorded at the lidar stations. Layer-mean lidar ratios are found in the range 40–55 sr at 355 nm and 34–61 sr at 532 nm during the event. The particle depolarization ratios are found to be constant inside the dust layer, and consistent from one site to another. Layer-mean values vary in the range 0.19–0.31. Another remarkable aspect of the event is the limited vertical distribution of the dust plume which never exceeds 5 km. The extreme aspect of the event also presented a nice case for testing the ability of two dust forecast models, BSC-DREAM8b and NMMB/BSC-Dust, to reproduce the arrival, the vertical distribution and the intensity of the dust plume over a long-range transport region. In the particular case of the February 2017 dust event, we found a large underestimation in the forecast of the extinction coefficient provided by BSC-DREAM8b at all heights independently of the site. In contrast NMMB/BSC-Dust forecasts presented a better agreement with the observations, especially in southwestern part of the IP. With regard to the forecast skill as a function of lead time, no clear degradation of the prognostic is appreciated at 24, 48 and 72 h for Évora and Granada stations (South). However the prognostic does degrade (bias increases and/or correlation decreases) for Barcelona (North), which is attributed to the fact that Barcelona is at a greater distance from the source region and to the singularity of the event.Funding from the H2020 program from the European Union (grant agreement no. 654109, 778349)Spanish Ministry of Industry, Economy and Competitiviness (MINECO, ref. CGL2013-45410-R, CGL2016-81092-R, CGL2017-85344-R, TEC2015-63832-P)Spanish Ministry of Science, Innovation and Universities (ref. CGL2017-90884-REDT)CommSensLab "Maria de Maeztu" Unity of Excellence (ref. MDM-2016-0600) financed by the Spanish Agencia Estatal de InvestigaciónCo-funding was also provided by the European Union through the European Regional Development Fund (ref. POCI-01-0145-FEDER-007690, ALT20-03-0145-FEDER-000004, ALT20-03-0145-FEDER-000011)Andalusia Regional Government (ref. P12-RNM-2409); by the Madrid Regional Government (projects TIGAS-CM, ref. Y2018/EMT-5177 and AIRTEC-CM, ref. P2018/EMT4329)Portuguese Foundation for Science and Technology and national funding (ref. SFRH/BSAB/143164/2019

    Rehearsal for Assessment of atmospheric optical Properties during biomass burning Events and Long-range transportation episodes at Metropolitan Area of São Paulo-Brazil (RAPEL)

    No full text
    During the period of August-September 2016 an intensive campaign was carried out to assess aerosol properties in São Paulo-Brazil aiming to detect long-range aerosol transport events and to characterize the instrument regarding data quality. Aerosol optical properties retrieved by the GALION - LALINET SPU lidar station and collocated AERONET sunphotometer system are presented as extinction/ backscatter vertical profiles with microphysical products retrieved with GRASP inversion algorithm

    Comparative assessment of GRASP algorithm for a dust event over Granada (Spain) during ChArMEx-ADRIMED 2013 campaign

    No full text
    In this study, vertical profiles and column-integrated aerosol properties retrieved by the GRASP (Generalized Retrieval of Atmosphere and Surface Properties) algorithm are evaluated with in situ airborne measurements made during the ChArMEx-ADRIMED field campaign in summer 2013. In the framework of this campaign, two different flights took place over Granada (Spain) during a desert dust episode on 16 and 17 June. The GRASP algorithm, which combines lidar and sun–sky photometer data measured at Granada, was used to retrieve aerosol properties. Two sun-photometer datasets are used: one co-located with the lidar system and the other in the Cerro Poyos station, approximately 1200 m higher than the lidar system but at a short horizontal distance. Column-integrated aerosol microphysical properties retrieved by GRASP are compared with AERONET products showing a good agreement. Differences between GRASP retrievals and airborne extinction profiles are in the range of 15 to 30 %, depending on the instrument on board the aircraft used as reference. On 16 June, a case where the dust layer was coupled to the aerosol layer close to surface, the total volume concentration differences between in situ data and GRASP retrieval are 15 and 36 % for Granada and Cerro Poyos retrievals, respectively. In contrast, on 17 June the dust layer was decoupled from the aerosol layer close to the surface, and the differences are around 17 % for both retrievals. In general, all the discrepancies found are within the uncertainly limits, showing the robustness and reliability of the GRASP algorithm. However, the better agreement found for the Cerro Poyos retrieval with the aircraft data and the vertical homogeneity of certain properties retrieved with GRASP, such as the scattering Ångström exponent, for cases with aerosol layers characterized by different aerosol types, shows that uncertainties in the vertical distribution of the aerosol properties have to be considered. The comparison presented here between GRASP and other algorithms (i.e. AERONET and LIRIC) and with airborne in situ measurements shows the potential to retrieve the optical and microphysical profiles of the atmospheric aerosol properties. Also, the advantage of GRASP versus LIRIC is that GRASP does not assume the results of the AERONET inversion as a starting point

    Rehearsal for Assessment of atmospheric optical Properties during biomass burning Events and Long-range transportation episodes at Metropolitan Area of São Paulo-Brazil (RAPEL)

    No full text
    During the period of August-September 2016 an intensive campaign was carried out to assess aerosol properties in São Paulo-Brazil aiming to detect long-range aerosol transport events and to characterize the instrument regarding data quality. Aerosol optical properties retrieved by the GALION - LALINET SPU lidar station and collocated AERONET sunphotometer system are presented as extinction/ backscatter vertical profiles with microphysical products retrieved with GRASP inversion algorithm

    Microphysical characterization of long-range transported biomass burning particles from North America at three EARLINET stations

    Get PDF
    Strong events of long-range transported biomass burning aerosol were detected during July 2013 at three EARLINET (European Aerosol Research Lidar Network) stations, namely Granada (Spain), Leipzig (Germany) and Warsaw (Poland). Satellite observations from MODIS (Moderate Resolution Imaging Spectroradiometer) and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) instruments, as well as modeling tools such as HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) and NAAPS (Navy Aerosol Analysis and Prediction System), have been used to estimate the sources and transport paths of those North American forest fire smoke particles. A multiwavelength Raman lidar technique was applied to obtain vertically resolved particle optical properties, and further inversion of those properties with a regularization algorithm allowed for retrieving microphysical information on the studied particles. The results highlight the presence of smoke layers of 1–2 km thickness, located at about 5 km a.s.l. altitude over Granada and Leipzig and around 2.5 km a.s.l. at Warsaw. These layers were intense, as they accounted for more than 30 % of the total AOD (aerosol optical depth) in all cases, and presented optical and microphysical features typical for different aging degrees: color ratio of lidar ratios (LR532 ∕ LR355) around 2, α-related ångström exponents of less than 1, effective radii of 0.3 µm and large values of single scattering albedos (SSA), nearly spectrally independent. The intensive microphysical properties were compared with columnar retrievals form co-located AERONET (Aerosol Robotic Network) stations. The intensity of the layers was also characterized in terms of particle volume concentration, and then an experimental relationship between this magnitude and the particle extinction coefficient was established

    VERTICALLY-RESOLVED CHARACTERIZATION OF THE FEBRUARY 2016 EXCEPTIONAL SAHARAN DUST EPISODE OVER THE IBERIAN PENINSULA BY FOUR EARLINET STATIONS

    No full text
    An unusual Saharan dust outbreak occurred on 20-24 February 2016 over the Iberian Peninsula. This work focuses on the particle vertical distribution investigated at four EARLINET AERONET stations: Granada, Évora, Burjassot and Barcelona. This event was exceptional because: (i) Saharan dust outbreaks over the Iberian Peninsula are atypical during wintertime,(ii) the aerosol optical depth reached high values (up to 0.87 at 500 nm over Granada), and (iii) the dust vertical extension was confined to low altitudes
    corecore