335 research outputs found

    Valor clínico del signo de Hill y Flack

    Get PDF

    Quiste nasolabial. Revisión de la literatura y aportación de 9 casos

    Get PDF
    Se presenta un estudio retrospectivo de 9 casos de quiste nasolabial, comparándose los principales datos obtenidos con los procedentes de una revisión de la literatura; asimismo se discute su etiopatogenia, su terminología, las principales características clínicas, además de las pruebas complementarias que nos facilitarán su diagnóstico. Por último, se hace hincapié sobre su tratamiento y su pronóstico

    Robust plasmon waveguides in strongly-interacting nanowire arrays

    Full text link
    Arrays of parallel metallic nanowires are shown to provide a tunable, robust, and versatile platform for plasmon interconnects, including high-curvature turns with minimum signal loss. The proposed guiding mechanism relies on gap plasmons existing in the region between adjacent nanowires of dimers and multi-wire arrays. We focus on square and circular silver nanowires in silica, for which excellent agreement between both boundary element method and multiple multipolar expansion calculations is obtained. Our work provides the tools for designing plasmon-based interconnects and achieving high degree of integration with minimum cross talk between adjacent plasmon guides.Comment: 4 pages, 5 figure

    Channel plasmon-polaritons: modal shape, dispersion, and losses

    Get PDF
    We theoretically study channel plasmon-polaritons (CPPs) with a geometry similar to that in recent experiments at telecom wavelengths (Bozhevolnyi et al., Nature 440, 508 (2006)). The CPP modal shape, dispersion relation, and losses are simulated using the multiple multipole method and the finite difference time domain technique. It is shown that, with the increase of the wavelength, the fundamental CPP mode shifts progressively towards the groove opening, ceasing to be guided at the groove bottom and becoming hybridized with wedge plasmon-polaritons running along the groove edges.Comment: 4 pages, 4 figure

    Combined laser and atomic force microscope lithography on aluminum: Mask fabrication for nanoelectromechanical systems

    Get PDF
    A direct-write laser system and an atomic force microscope(AFM) are combined to modify thin layers of aluminum on an oxidizedsilicon substrate, in order to fabricate conducting and robust etch masks with submicron features. These masks are very well suited for the production of nanoelectromechanical systems(NEMS) by reactive ion etching. In particular, the laser-modified areas can be subsequently locally oxidized by AFM and the oxidized regions can be selectively removed by chemical etching. This provides a straightforward means to define the overall conducting structure of a device by laser writing, and to perform submicron modifications by AFMoxidation. The mask fabrication for a nanoscale suspended resonator bridge is used to illustrate the advantages of this combined technique for NEMS

    Enfermedad de Urbach-Wiethe: presentación de un caso con afectación bucal tratado con láser de CO2

    Get PDF
    Se presenta un caso de enfermedad de Urbach-Wiethe o lipoidoproteinosis con extensas lesiones orales que dificultaban la masticación. Se efectuó un remodelado gingival con fotobisturí de láser C02 en dos tiempos, con lo que se obtuvo un resultado sumamente satisfactorio. Se describen las principales características clínicas de esta rara enfermedad y se analiza la utilidad del láser C02 en la cirugía bucal

    Utilización de otros láseres en odontología: Argón, Nd:YAP y Ho:YAG

    Full text link
    Las ventajas que la incorporación del láser ha proporcionado a la Odontología abarcan todos los ámbitos. Así, los láseres de Argón, de Nd:YAP y de Ho:YAG, tienen aplicaciones muy concretas y de gran interés tanto en el campo de la terapéutica dental como en la especialida de cirugía bucal. Las aplicaciones principales del láser de Argón se centran en la polimerización de los materiales de restauración, en la endodoncia y dentro del ámbito de la cirugía bucal, en el corte de tejidos blandos, principalmente para la exéresis de lesiones vasculares y pigmentadas. El láser de Nd:YAP se utiliza principalmente en el campo de la endodoncia y la periodoncia, y el láser de Ho:YAG se emplea en cirugía periapical y en la cirugía artroscópica de la articulación temporomandibular

    Biocatalyzed synthesis of glycostructures with anti-infective activity

    Get PDF
    Molecules containing carbohydrate moieties play essential roles in fighting a variety of bacterial and viral infections. Consequently, the design of new carbohydrate-containing drugs or vaccines has attracted great attention in recent years as means to target several infectious diseases. Conventional methods to produce these compounds face numerous challenges because their current production technology is based on chemical synthesis, which often requires several steps and uses environmentally unfriendly reactants, contaminant solvents, and inefficient protocols. The search for sustainable processes such as the use of biocatalysts and eco-friendly solvents is of vital importance. Therefore, their use in a variety of reactions leading to the production of pharmaceuticals has increased exponentially in the last years, fueled by recent advances in protein engineering, enzyme directed evolution, combinatorial biosynthesis, immobilization techniques, and flow biocatalysis. In glycochemistry and glycobiology, enzymes belonging to the families of glycosidases, glycosyltransferases (Gtfs), lipases, and, in the case of nucleoside and nucleotide analogues, also nucleoside phosphorylases (NPs) are the preferred choices as catalysts. In this Account, on the basis of our expertise, we will discuss the recent biocatalytic and sustainable approaches that have been employed to synthesize carbohydrate-based drugs, ranging from antiviral nucleosides and nucleotides to antibiotics with antibacterial activity and glycoconjugates such as neoglycoproteins (glycovaccines, GCVs) and glycodendrimers that are considered as very promising tools against viral and bacterial infections. In the first section, we will report the use of NPs and N-deoxyribosyltransferases for the development of transglycosylation processes aimed at the synthesis of nucleoside analogues with antiviral activity. The use of deoxyribonucleoside kinases and hydrolases for the modification of the sugar moiety of nucleosides has been widely investigated. Next, we will describe the results obtained using enzymes for the chemoenzymatic synthesis of glycoconjugates such as GCVs and glycodendrimers with antibacterial and antiviral activity. In this context, the search for efficient enzymatic syntheses represents an excellent strategy to produce structure-defined antigenic or immunogenic oligosaccharide analogues with high purity. Lipases, glycosidases, and Gtfs have been used for their preparation. Interestingly, many authors have proposed the use Gtfs originating from the biosynthesis of natural glycosylated antibiotics such as glycopeptides, macrolides, and aminoglycosides. These have been used in the chemoenzymatic semisynthesis of novel antibiotic derivatives by modification of the sugar moiety linked to their complex scaffold. These contributions will be described in the last section of this review because of their relevance in the fight against the spreading phenomenon of antibiotic resistance. In this context, the pioneering in vivo synthesis of novel derivatives obtained by genetic manipulation of producer strains (combinatorial biosynthesis) will be shortly described as well. All of these strategies provide a useful and environmentally friendly synthetic toolbox. Likewise, the field represents an illustrative example of how biocatalysis can contribute to the sustainable development of complex glycan-based therapies and how problems derived from the integration of natural tools in synthetic pathways can be efficiently tackled to afford high yields and selectivity. The use of enzymatic synthesis is becoming a reality in the pharmaceutical industry and in drug discovery to rapidly afford collections of new antibacterial or antiviral molecules with improved specificity and better metabolic stability
    corecore