2,491 research outputs found
Effects of momentum conservation on the analysis of anisotropic flow
We present a general method for taking into account correlations due to
momentum conservation in the analysis of anisotropic flow, either by using the
two-particle correlation method or the standard flow vector method. In the
latter, the correlation between the particle and the flow vector is either
corrected through a redefinition (shift) of the flow vector, or subtracted
explicitly from the observed flow coefficient. In addition, momentum
conservation contributes to the reaction plane resolution. Momentum
conservation mostly affects the first harmonic in azimuthal distributions,
i.e., directed flow. It also modifies higher harmonics, for instance elliptic
flow, when they are measured with respect to a first harmonic event plane such
as one determined with the standard transverse momentum method. Our method is
illustrated by application to NA49 data on pion directed flow.Comment: RevTeX 4, 10 pages, 1 eps figure. Version accepted for publication in
Phys Rev
Flow angle from intermediate mass fragment measurements
Directed sideward flow of light charged particles and intermediate mass
fragments was measured in different symmetric reactions at bombarding energies
from 90 to 800 AMeV. The flow parameter is found to increase with the charge of
the detected fragment up to Z = 3-4 and then turns into saturation for heavier
fragments. Guided by simple simulations of an anisotropic expanding thermal
source, we show that the value at saturation can provide a good estimate of the
flow angle, , in the participant region. It is found that
depends strongly on the impact parameter. The excitation
function of reveals striking deviations from the ideal
hydrodynamical scaling. The data exhibit a steep rise of \Theta_{\flow} to a
maximum at around 250-400 AMeV, followed by a moderate decrease as the
bombarding energy increases further.Comment: 28 pages Revtex, 6 figures (ps files), to appear in Nucl.Phys.
Differential directed flow in Au+Au collisions
We present experimental data on directed flow in semi-central Au+Au
collisions at incident energies from 90 to 400 A MeV. For the first time for
this energy domain, the data are presented in a transverse momentum
differential way. We study the first order Fourier coefficient v1 for different
particle species and establish a gradual change of its patterns as a function
of incident energy and for different regions in rapidity.Comment: 5 pages, Latex, 5 eps figures, accepted for publication in Phys. Rev.
C (Rapid Communications). Data files available at
http://www-linux.gsi.de/~andronic/fopi/v1.htm
Event Anisotropy in High Energy Nucleus-Nucleus Collisions
The predictions of event anisotropy parameters from transport model RQMD are
compared with the recent experimental measurements for 158 GeV Pb+Pb
collisions. Using the same model, we study the time evolution of event
anisotropy at 2 GeV and 158 GeV for several colliding systems. For the
first time, both momentum and configuration space information are studied using
the Fourier analysis of the azimuthal angular distribution. We find that, in
the model, the initial geometry of the collision plays a dominant role in
determining the anisotropy parameters.Comment: 18 pages, 7 figures, 2 table
Directed flow in Au+Au, Xe+CsI and Ni+Ni collisions and the nuclear equation of state
We present new experimental data on directed flow in collisions of Au+Au,
Xe+CsI and Ni+Ni at incident energies from 90 to 400A MeV. We study the
centrality and system dependence of integral and differential directed flow for
particles selected according to charge. All the features of the experimental
data are compared with Isospin Quantum Molecular Dynamics (IQMD) model
calculations in an attempt to extract information about the nuclear matter
equation of state (EoS). We show that the combination of rapidity and
transverse momentum analysis of directed flow allow to disentangle various
parametrizations in the model. At 400A MeV, a soft EoS with momentum dependent
interactions is best suited to explain the experimental data in Au+Au and
Xe+CsI, but in case of Ni+Ni the model underpredicts flow for any EoS. At 90A
MeV incident beam energy, none of the IQMD parametrizations studied here is
able to consistently explain the experimental data.Comment: RevTeX, 20 pages, 30 eps figures, accepted for publication in Phys.
Rev. C. Data files available at http://www.gsi.de/~fopiwww/pub
Two-proton small-angle correlations in central heavy-ion collisions: a beam-energy and system-size dependent study
Small-angle correlations of pairs of protons emitted in central collisions of
Ca + Ca, Ru + Ru and Au + Au at beam energies from 400 to 1500 MeV per nucleon
are investigated with the FOPI detector system at SIS/GSI Darmstadt.
Dependences on system size and beam energy are presented which extend the
experimental data basis of pp correlations in the SIS energy range
substantially. The size of the proton-emitting source is estimated by comparing
the experimental data with the output of a final-state interaction model which
utilizes either static Gaussian sources or the one-body phase-space
distribution of protons provided by the BUU transport approach. The trends in
the experimental data, i.e. system-size and beam energy dependences, are well
reproduced by this hybrid model. However, the pp correlation function is found
rather insensitive to the stiffness of the equation of state entering the
transport model calculations.Comment: 9 pages, 8 figures, accepted at Eur. Phys. Journ.
Flow analysis from multiparticle azimuthal correlations
We present a new method for analyzing directed and elliptic flow in heavy ion
collisions. Unlike standard methods, it separates the contribution of flow to
azimuthal correlations from contributions due to other effects. The separation
relies on a cumulant expansion of multiparticle azimuthal correlations, and
includes corrections for detector inefficiencies. This new method allows the
measurement of the flow of identified particles in narrow phase-space regions,
and can be used in every regime, from intermediate to ultrarelativistic
energies.Comment: 31 pages, revtex. Published version (references added
Isospin dependence of relative yields of and mesons at 1.528 AGeV
Results on and meson production in Ru +
Ru and Zr + Zr collisions at a beam kinetic
energy of 1.528 GeV, measured with the FOPI detector at GSI-Darmstadt, are
investigated as a possible probe of isospin effects in high density nuclear
matter. The measured double ratio ()/() is
compared to the predictions of a thermal model and a Relativistic Mean Field
transport model using two different collision scenarios and under different
assumptions on the stiffness of the symmetry energy. We find a good agreement
with the thermal model prediction and the assumption of a soft symmetry energy
for infinite nuclear matter while more realistic transport simulations of the
collisions show a similar agreement with the data but also exhibit a reduced
sensitivity to the symmetry term.Comment: 5 pages, 3 figures. accepted for publication in Phys. Rev.
Strange meson production in Al+Al collisions at 1.9A GeV
The production of K, K and (1020) mesons is studied in Al+Al
collisions at a beam energy of 1.9A GeV which is close or below the production
threshold in NN reactions. Inverse slopes, anisotropy parameters, and total
emission yields of K mesons are obtained. A comparison of the ratio of
kinetic energy distributions of K and K mesons to the HSD transport
model calculations suggests that the inclusion of the in-medium modifications
of kaon properties is necessary to reproduce the ratio. The inverse slope and
total yield of mesons are deduced. The contribution to K production
from meson decays is found to be [17 3 (stat) (syst)]
%. The results are in line with previous K and data obtained for
different colliding systems at similar incident beam energies.Comment: 16 pages, 11 figure
Physics of the Muon Spectrometer of the ALICE Experiment
The main goal of the Muon spectrometer of the ALICE experiment at LHC is the
measurement of heavy quark production in p+p, p+A and A+A collisions at LHC
energies, via the muonic channel. Physics motivations and expected performances
have been presented in this talk.Comment: 10 pages and 4 figures. Talk presented in the ICPAQGP Conference,
February 8-12, 2005, Salt Lake City, Kolkata, India. Web page of the
conference : http://www.veccal.ernet.in/~icpaqgp
- …