234 research outputs found

    Magnetic Flux Expulsion in the Powerful Superbubble Explosions and the Alpha-Omega Dynamo

    Full text link
    The possibility of the magnetic flux expulsion from the Galaxy in the superbubble (SB) explosions, important for the Alpha-Omega dynamo, is considered. Special emphasis is put on the investigation of the downsliding of the matter from the top of the shell formed by the SB explosion which is able to influence the kinematics of the shell. It is shown that either Galactic gravity or the development of the Rayleigh-Taylor instabilities in the shell limit the SB expansion, thus, making impossible magnetic flux expulsion. The effect of the cosmic rays in the shell on the sliding is considered and it is shown that it is negligible compared to Galactic gravity. Thus, the question of possible mechanism of flux expulsion in the Alpha-Omega dynamo remains open.Comment: MNRAS, in press, 11 pages, 9 figure

    The 511 keV emission from positron annihilation in the Galaxy

    Full text link
    The first gamma-ray line originating from outside the solar system that was ever detected is the 511 keV emission from positron annihilation in the Galaxy. Despite 30 years of intense theoretical and observational investigation, the main sources of positrons have not been identified up to now. Observations in the 1990's with OSSE/CGRO showed that the emission is strongly concentrated towards the Galactic bulge. In the 2000's, the SPI instrument aboard ESA's INTEGRAL gamma-ray observatory allowed scientists to measure that emission across the entire Galaxy, revealing that the bulge/disk luminosity ratio is larger than observed in any other wavelength. This mapping prompted a number of novel explanations, including rather "exotic ones (e.g. dark matter annihilation). However, conventional astrophysical sources, like type Ia supernovae, microquasars or X-ray binaries, are still plausible candidates for a large fraction of the observed total 511 keV emission of the bulge. A closer study of the subject reveals new layers of complexity, since positrons may propagate far away from their production sites, making it difficult to infer the underlying source distribution from the observed map of 511 keV emission. However, contrary to the rather well understood propagation of high energy (>GeV) particles of Galactic cosmic rays, understanding the propagation of low energy (~MeV) positrons in the turbulent, magnetized interstellar medium, still remains a formidable challenge. We review the spectral and imaging properties of the observed 511 keV emission and we critically discuss candidate positron sources and models of positron propagation in the Galaxy.Comment: 62 pages, 35 figures. Review paper to appear in Reviews of Modern Physic

    In Situ Origin of Large Scale Galactic Magnetic Fields Without Kinetic Helicity?

    Get PDF
    The origin and sustenance of large scale galactic magnetic fields has been a long standing and controversial astrophysical problem. Here an alternative to the ``standard'' \a-\Omega mean field dynamo and primordial theories is pursued. The steady supply of supernovae induced turbulence exponentiates the total field energy, providing a significant seed mean field that can be linearly stretched by shear. The observed micro-Gauss fields would be produced primarily within one vertical diffusion time since it is only during this time that linear stretching can compete with diffusion. This approach does not invoke exponential mean field dynamo growth from the helicity \a-effect but does employ turbulent diffusion, which limits the number of large scale reversals. The approach could be of interest if the helicity effect is suppressed independently of the turbulent diffusion. This is an important but presently unresolved issue.Comment: 15 pages TeX, accepted, ApJ

    The spatial energy spectrum of magnetic fields in our Galaxy

    Full text link
    Interstellar magnetic fields exist over a broad range of spatial scales, extending from the large Galactic scales (∌10\sim 10 kpc) down to the very small dissipative scales (â‰Ș1\ll 1 pc). In this paper, we use a set of 490 pulsars distributed over roughly one third of the Galactic disk out to a radius R≃10R \simeq 10 kpc (assuming R⊙=8.5R_\odot = 8.5 kpc) and combine their observed rotation and dispersion measures with their estimated distances to derive the spatial energy spectrum of the Galactic interstellar magnetic field over the scale range 0.5−150.5 - 15 kpc. We obtain a nearly flat spectrum, with a 1D power-law index α=−0.37±0.10\alpha=-0.37\pm0.10 for EB(k)=CkαE_{\rm B}(k)=C k^{\alpha} and an rms field strength of approximately 6ÎŒ6 \muG over the relevant scales. Our study complements the derivation of the magnetic energy spectrum over the scale range 0.03−1000.03 - 100 pc by \citet{ms96b}, showing that the magnetic spectrum becomes flatter at larger scales. This observational result is discussed in the framework of current theoretical and numerical models.Comment: 7 pages, 6 figures, ApJ accepte

    Spectral analysis of the Galactic e+e- annihilation emission

    Full text link
    We present a spectral analysis of the e+e- annihilation emission from the Galactic Centre region based on the first year of measurements made with the spectrometer SPI of the INTEGRAL mission. We have found that the annihilation spectrum can be modelled by the sum of a narrow and a broad 511 keV line plus an ortho-Ps continuum. The broad line is detected with a flux of (0.35+/-0.11)e-3 s-1 cm-2. The measured width of 5.4+/-1.2 keV FWHM is in agreement with the expected broadening of 511 keV photons emitted in the annihilation of Ps that are formed by the charge exchange process of slowing down positrons with H atoms. The flux of the narrow line is (0.72+/-0.12)e-3 s-1 cm-2 and its width is 1.3+/-0.4 keV FWHM. The measured ortho-Ps continuum flux yields a fraction of Ps of (96.7+/-2.2)%. To derive in what phase of the interstellar medium positrons annihilate, we have fitted annihilation models calculated for each phase to the data. We have found that 49(+2,-23)% of the annihilation emission comes from the warm neutral phase and 51(+3,-2)% from the warm ionized phase. While we may not exclude that less than 23% of the emission might come from cold gas, we have constrained the fraction of annihilation emission from molecular clouds and hot gas to be less than 8% and 0.5%, respectively. We have compared our knowledge of the interstellar medium in the bulge and the propagation of positrons with our results and found that they are in good agreement if the sources are diffusively distributed and if the initial kinetic energy of positrons is lower than a few MeV. Despite its large filling factor, the lack of annihilation emission from the hot gas is due to its low density, which allows positrons to escape this phase.Comment: 12 pages, 6 figures, accepted in A&

    The Evolution of Adiabatic Supernova Remnants in a Turbulent, Magnetized Medium

    Get PDF
    (Abridged) We present the results of three dimensional calculations for the MHD evolution of an adiabatic supernova remnant in both a uniform and turbulent interstellar medium using the RIEMANN framework of Balsara. In the uniform case, which contains an initially uniform magnetic field, the density structure of the shell remains largely spherical, while the magnetic pressure and synchrotron emissivity are enhanced along the plane perpendicular to the field direction. This produces a bilateral or barrel-type morphology in synchrotron emission for certain viewing angles. We then consider a case with a turbulent external medium as in Balsara & Pouquet, characterized by vA(rms)/cs=2v_{A}(rms)/c_{s}=2. Several important changes are found. First, despite the presence of a uniform field, the overall synchrotron emissivity becomes approximately spherically symmetric, on the whole, but is extremely patchy and time-variable, with flickering on the order of a few computational time steps. We suggest that the time and spatial variability of emission in early phase SNR evolution provides information on the turbulent medium surrounding the remnant. The shock-turbulence interaction is also shown to be a strong source of helicity-generation and, therefore, has important consequences for magnetic field generation. We compare our calculations to the Sedov-phase evolution, and discuss how the emission characteristics of SNR may provide a diagnostic on the nature of turbulence in the pre-supernova environment.Comment: ApJ, in press, 5 color figure

    Evidence for dark matter in the inner Milky Way

    Full text link
    The ubiquitous presence of dark matter in the universe is today a central tenet in modern cosmology and astrophysics. Ranging from the smallest galaxies to the observable universe, the evidence for dark matter is compelling in dwarfs, spiral galaxies, galaxy clusters as well as at cosmological scales. However, it has been historically difficult to pin down the dark matter contribution to the total mass density in the Milky Way, particularly in the innermost regions of the Galaxy and in the solar neighbourhood. Here we present an up-to-date compilation of Milky Way rotation curve measurements, and compare it with state-of-the-art baryonic mass distribution models. We show that current data strongly disfavour baryons as the sole contribution to the galactic mass budget, even inside the solar circle. Our findings demonstrate the existence of dark matter in the inner Galaxy while making no assumptions on its distribution. We anticipate that this result will compel new model-independent constraints on the dark matter local density and profile, thus reducing uncertainties on direct and indirect dark matter searches, and will shed new light on the structure and evolution of the Galaxy.Comment: First submitted version of letter published in Nature Physics on Febuary 9, 2015: http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys3237.htm

    COrE (Cosmic Origins Explorer) A White Paper

    Full text link
    COrE (Cosmic Origins Explorer) is a fourth-generation full-sky, microwave-band satellite recently proposed to ESA within Cosmic Vision 2015-2025. COrE will provide maps of the microwave sky in polarization and temperature in 15 frequency bands, ranging from 45 GHz to 795 GHz, with an angular resolution ranging from 23 arcmin (45 GHz) and 1.3 arcmin (795 GHz) and sensitivities roughly 10 to 30 times better than PLANCK (depending on the frequency channel). The COrE mission will lead to breakthrough science in a wide range of areas, ranging from primordial cosmology to galactic and extragalactic science. COrE is designed to detect the primordial gravitational waves generated during the epoch of cosmic inflation at more than 3σ3\sigma for r=(T/S)>=10−3r=(T/S)>=10^{-3}. It will also measure the CMB gravitational lensing deflection power spectrum to the cosmic variance limit on all linear scales, allowing us to probe absolute neutrino masses better than laboratory experiments and down to plausible values suggested by the neutrino oscillation data. COrE will also search for primordial non-Gaussianity with significant improvements over Planck in its ability to constrain the shape (and amplitude) of non-Gaussianity. In the areas of galactic and extragalactic science, in its highest frequency channels COrE will provide maps of the galactic polarized dust emission allowing us to map the galactic magnetic field in areas of diffuse emission not otherwise accessible to probe the initial conditions for star formation. COrE will also map the galactic synchrotron emission thirty times better than PLANCK. This White Paper reviews the COrE science program, our simulations on foreground subtraction, and the proposed instrumental configuration.Comment: 90 pages Latex 15 figures (revised 28 April 2011, references added, minor errors corrected

    A Broadband Study of Galactic Dust Emission

    Get PDF
    We have combined infrared data with HI, H2 and HII surveys in order to spatially decompose the observed dust emission into components associated with different phases of the gas. An inversion technique is applied. For the decomposition, we use the IRAS 60 and 100 micron bands, the DIRBE 140 and 240 micron bands, as well as Archeops 850 and 2096 micron wavelengths. In addition, we apply the decomposition to all five WMAP bands. We obtain longitude and latitude profiles for each wavelength and for each gas component in carefully selected Galactic radius bins.We also derive emissivity coefficients for dust in atomic, molecular and ionized gas in each of the bins.The HI emissivity appears to decrease with increasing Galactic radius indicating that dust associated with atomic gas is heated by the ambient interstellar radiation field (ISRF). By contrast, we find evidence that dust mixed with molecular clouds is significantly heated by O/B stars still embedded in their progenitor clouds. By assuming a modified black-body with emissivity law lambda^(-1.5), we also derive the radial distribution of temperature for each phase of the gas. All of the WMAP bands except W appear to be dominated by emission from something other than normal dust, most likely a mixture of thermal bremstrahlung from diffuse ionized gas, synchrotron emission and spinning dust. Furthermore, we find indications of an emissivity excess at long wavelengths (lambda > 850 micron) in the outer Galaxy (R > 8.9 kpc). This suggests either the existence of a very cold dust component in the outer Galaxy or a temperature dependence of the spectral emissivity index. Finally, it is shown that ~ 80% of the total FIR luminosity is produced by dust associated with atomic hydrogen, in agreement with earlier findings by Sodroski et al. (1997).Comment: accepted for publication by A&
    • 

    corecore