research

The Evolution of Adiabatic Supernova Remnants in a Turbulent, Magnetized Medium

Abstract

(Abridged) We present the results of three dimensional calculations for the MHD evolution of an adiabatic supernova remnant in both a uniform and turbulent interstellar medium using the RIEMANN framework of Balsara. In the uniform case, which contains an initially uniform magnetic field, the density structure of the shell remains largely spherical, while the magnetic pressure and synchrotron emissivity are enhanced along the plane perpendicular to the field direction. This produces a bilateral or barrel-type morphology in synchrotron emission for certain viewing angles. We then consider a case with a turbulent external medium as in Balsara & Pouquet, characterized by vA(rms)/cs=2v_{A}(rms)/c_{s}=2. Several important changes are found. First, despite the presence of a uniform field, the overall synchrotron emissivity becomes approximately spherically symmetric, on the whole, but is extremely patchy and time-variable, with flickering on the order of a few computational time steps. We suggest that the time and spatial variability of emission in early phase SNR evolution provides information on the turbulent medium surrounding the remnant. The shock-turbulence interaction is also shown to be a strong source of helicity-generation and, therefore, has important consequences for magnetic field generation. We compare our calculations to the Sedov-phase evolution, and discuss how the emission characteristics of SNR may provide a diagnostic on the nature of turbulence in the pre-supernova environment.Comment: ApJ, in press, 5 color figure

    Similar works

    Available Versions

    Last time updated on 01/04/2019