1,245 research outputs found

    Second order perturbation theory for embedded eigenvalues

    Full text link
    We study second order perturbation theory for embedded eigenvalues of an abstract class of self-adjoint operators. Using an extension of the Mourre theory, under assumptions on the regularity of bound states with respect to a conjugate operator, we prove upper semicontinuity of the point spectrum and establish the Fermi Golden Rule criterion. Our results apply to massless Pauli-Fierz Hamiltonians for arbitrary coupling.Comment: 30 pages, 2 figure

    Does enhanced nitrogen deposition represent a threat to Sphagnum and thus the sustainability of Scottish peatlands?

    Get PDF
    Nutrient limited ombrotrophic bogs and peatlands support high conservation valued ecosystems, potentially susceptible to current elevated levels of reactive nitrogen (N) deposition. Here, we present the effects and consequences of different N forms, wet, dry, reduced and oxidised N on the functioning of a bog moss, Sphagnum capillifolium. Sphagnum mosses maintain the acid, low nutrient conditions, crucial for the sustainability of peat lands, where productivity must exceed decomposition. Dry deposited ammonia substantially elevated shoot N status, which led to tissue breakdown loss of function and death in S. capillifolium. Wet deposited nitrate and ammonium also negatively affected S. capillifolium, significantly reducing shoot extension and cover and significantly elevating N status. These effects occurred over 5 years and were significant even at the lowest reduced N dose, 8 kg N ha-1 y1 (background = 8-10 kg N ha-1 y-1), highlighting the threat N poses for the effective functioning of bog ecosystems

    Climatic and palaeoceanographic changes during the Pliensbachian (Early Jurassic) 2 inferred from clay mineralogy and stable isotope (C-O) geochemistry (NW Europe)

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Available online 17 January 2017The Early Jurassic was broadly a greenhouse climate period that was punctuated by short warm and cold climatic events, positive and negative excursions of carbon isotopes, and episodes of enhanced organic matter burial. Clay minerals from Pliensbachian sediments recovered from two boreholes in the Paris Basin, are used here as proxies of detrital supplies, runoff conditions, and palaeoceanographic changes. The combined use of these minerals with ACCEPTED MANUSCRIPT ACCEPTED MANUSCRIPT stable isotope data (C-O) from bulk carbonates and organic matter allows palaeoclimatic reconstructions to be refined for the Pliensbachian. Kaolinite/illite ratio is discussed as a reliable proxy of the hydrological cycle and runoff from landmasses. Three periods of enhanced runoff are recognised within the Pliensbachian. The first one at the SinemurianPliensbachian transition shows a significant increase of kaolinite concomitant with the negative carbon isotope excursion at the so-called Sinemurian Pliensbachian Boundary Event (SPBE). The Early/Late Pliensbachian transition was also characterised by more humid conditions. This warm interval is associated with a major change in oceanic circulation during the Davoei Zone, likely triggered by sea-level rise; the newly created palaeogeography, notably the flooding of the London-Brabant Massif, allowed boreal detrital supplies, including kaolinite and chlorite, to be exported to the Paris Basin. The last event of enhanced runoff occurred during the late Pliensbachian (Subdonosus Subzone of the Margaritatus Zone), which occurred also during a warm period, favouring organic matter production and preservation. Our study highlights the major role of the London Brabant Massif in influencing oceanic circulation of the NW European area, as a topographic barrier (emerged lands) during periods of lowstand sea-level and its flooding during period of high sea-level. This massif was the unique source of smectite in the Paris Basin. Two episodes of smectite-rich sedimentation (‘smectite events’), coincide with regressive intervals, indicating emersion of the London Brabant Massif and thus suggesting that an amplitude of sea-level change high enough to be linked to glacio-eustasy. This mechanism is consistent with sedimentological and geochemical evidences of continental ice growth notably during the Latest Pliensbachian (Spinatum Zone), and possibly during the Early Pliensbachian (late Jamesoni/early Ibex Zones).The study was supported by the “Agence Nationale pour la Gestion des Déchets Radioactifs” (Andra––French National Radioactive Waste Management Agency)

    Scattering Theory Approach to Random Schroedinger Operators in One Dimension

    Get PDF
    Methods from scattering theory are introduced to analyze random Schroedinger operators in one dimension by applying a volume cutoff to the potential. The key ingredient is the Lifshitz-Krein spectral shift function, which is related to the scattering phase by the theorem of Birman and Krein. The spectral shift density is defined as the "thermodynamic limit" of the spectral shift function per unit length of the interaction region. This density is shown to be equal to the difference of the densities of states for the free and the interacting Hamiltonians. Based on this construction, we give a new proof of the Thouless formula. We provide a prescription how to obtain the Lyapunov exponent from the scattering matrix, which suggest a way how to extend this notion to the higher dimensional case. This prescription also allows a characterization of those energies which have vanishing Lyapunov exponent.Comment: 1 figur

    Random repeated quantum interactions and random invariant states

    Full text link
    We consider a generalized model of repeated quantum interactions, where a system H\mathcal{H} is interacting in a random way with a sequence of independent quantum systems Kn,n1\mathcal{K}_n, n \geq 1. Two types of randomness are studied in detail. One is provided by considering Haar-distributed unitaries to describe each interaction between H\mathcal{H} and Kn\mathcal{K}_n. The other involves random quantum states describing each copy Kn\mathcal{K}_n. In the limit of a large number of interactions, we present convergence results for the asymptotic state of H\mathcal{H}. This is achieved by studying spectral properties of (random) quantum channels which guarantee the existence of unique invariant states. Finally this allows to introduce a new physically motivated ensemble of random density matrices called the \emph{asymptotic induced ensemble}

    Scattering induced current in a tight-binding band

    Get PDF
    International audienceIn the single band tight-binding approximation, we consider the transport properties of an electron in a homogeneous static electric field. We show that repeated interactions of the electron with two-level systems in thermal equilibrium suppress the Bloch oscillations and induce a steady current, the statistical properties of which we study
    corecore