We study second order perturbation theory for embedded eigenvalues of an
abstract class of self-adjoint operators. Using an extension of the Mourre
theory, under assumptions on the regularity of bound states with respect to a
conjugate operator, we prove upper semicontinuity of the point spectrum and
establish the Fermi Golden Rule criterion. Our results apply to massless
Pauli-Fierz Hamiltonians for arbitrary coupling.Comment: 30 pages, 2 figure