75 research outputs found

    Dynamical relativistic corrections to the leptonic decay width of heavy quarkonia

    Get PDF
    We calculate the dynamical relativistic corrections, originating from radiative one-gluon-exchange, to the leptonic decay width of heavy quarkonia in the framework of a covariant formulation of Light-Front Dynamics. Comparison with the non-relativistic calculations of the leptonic decay width of J=1 charmonium and bottomonium S-ground states shows that relativistic corrections are large. Most importantly, the calculation of these dynamical relativistic corrections legitimate a perturbative expansion in αs\alpha_s, even in the charmonium sector. This is in contrast with the ongoing belief based on calculations in the non-relativistic limit. Consequences for the ability of several phenomenological potential to describe these decays are drawn.Comment: 17 pages, 7 figure

    Preon Trinity

    Get PDF
    We present a new minimal model for the substructure of all known quarks, leptons and weak gauge bosons, based on only three fundamental and stable spin-1/2 preons. As a consequence, we predict three new quarks, three new leptons, and six new vector bosons. One of the new quarks has charge 4e/3-4e/3. The model explains the apparent conservation of three lepton numbers, as well as the so-called Cabibbo-mixing of the dd and ss quarks, and predicts electromagnetic decays or oscillations between the neutrinos νˉμ\bar{\nu}_{\mu} (νμ\nu_{\mu}) and νe\nu_e (νˉe\bar{\nu}_e). Other neutrino oscillations, as well as rarer quark mixings and CP violation can come about due to a small quantum-mechanical mixing of two of the preons in the quark and lepton wave functions.Comment: 5 pages, Latex, no figure

    Higgs Pain? Take a Preon!

    Get PDF
    The Higgs mechanism is the favourite cure for the main problem with electroweak unification, namely how to reconcile a gauge theory with the need for massive gauge bosons. This problem does not exist in preon models for quark and lepton substructure with composite Z0Z^0 and WWs, which, consequently, also avoid all other theoretical complications and paradoxes with the Higgs mechanism. We present a new, minimal preon model, which explains the family structure, and predicts several new, heavy quarks, leptons and vector bosons. Our preons obey a phenomenological supersymmetry, but without so-called squarks and sleptons, since this SUSY is effective only on the composite scale.Comment: The preon contents of some quarks and leptons have been changed in order to achieve a more consistent scheme. A few new comments have been added. 13 pages, LaTeX, no figures. To be published in Proc. of the Meeting on 'The Fundamental Structure of Matter' and 'Tests of the Electroweak Symmetry Breaking', Ouranoupolis, Greece, May 199

    Non-perturbative renormalization in Light Front Dynamics with Fock space truncation

    Full text link
    Within the framework of the Covariant formulation of Light-Front Dynamics, we develop a general non-perturbative renormalization scheme based on the Fock decomposition of the state vector and its truncation. The explicit dependence of our formalism on the orientation of the light front is essential in order to analyze the structure of the counterterms and bare parameters needed to renormalize the theory. We present here a general strategy to determine the dependence of these quantities on the Fock sectors. We apply our formalism to QED for the two-body (one fermion and one boson) truncation and recover analytically, without any perturbative expansion, the renormalization of the electric charge according to the requirements of the Ward Identity.Comment: 7 pages, 6 figures, to appear in the proceedings of the Workshop on Light-Cone QCD and Nonperturbative Hadron Physics, Cairns, Australia, July 7-15, 200

    Preon Prophecies by the Standard Model

    Full text link
    The Standard Model of quarks and leptons is, at first sight, nothing but a set of {\it ad hoc} rules, with no connections, and no clues to their true background. At a closer look, however, there are many inherent prophecies that point in the same direction: {\it Compositeness} in terms of three stable preons.Comment: 13 pages, 8 eps-figures, invited talk at Beyond the Desert '03, Schloss Ringberg, Bavaria, June 2003; to be published in the Proceeding

    Estimates for parameters and characteristics of the confining SU(3)-gluonic field in neutral kaons and chiral limit for pseudoscalar nonet

    Full text link
    First part of the paper is devoted to applying the confinement mechanism proposed earlier by the author to estimate the possible parameters of the confining SU(3)-gluonic field in neutral kaons. The estimates obtained are consistent with the widths of the electromagnetic decays K0,Kˉ02γK^0,\bar{K}^0\to2\gamma too. The corresponding estimates of the gluon concentrations, electric and magnetic colour field strengths are also adduced for the mentioned field at the scales of the mesons under consideration. The second part of the paper takes into account the results obtained previously by the author to estimate the purely gluonic contribution to the masses of all the mesons of pseudoscalar nonet and also to consider a possible relation with a phenomenological string-like picture of confinement. Finally, the problem of masses in particle physics is shortly discussed within the framework of approach to the chiral symmetry breaking in quantum chromodynamics (QCD) proposed recently by the author.Comment: LaTeX, 16 pages, 2 figure

    Linking Geometric Mass Hierarchy with Threefold Family Replication

    Get PDF
    A link is established between the observed (approximate) geometric mass hierarchy of quarks and leptons and the triangular structure of their tenable flavor representations. This singles out SU(3) as the horizontal flavor group, thereby linking the Fermi mass hierarchy with the threefold family replication. These linkages are exploited within a flavor-chiral SU(3) model, with fermions and Higgs bosons in the 3+6* representation. The model is Left-Right symmetric and utilizes the universal see-saw mechanism with a geometric mass suppression pattern. Given certain assumptions, the model produces successful mass-ratio (rather than square-mass-ratio) mixing angle relations and fixes the light quark mass ratio.Comment: Revtex, 11 twocolumn pages, No figure

    Hadron Energy Reconstruction for the ATLAS Calorimetry in the Framework of the Non-parametrical Method

    Get PDF
    This paper discusses hadron energy reconstruction for the ATLAS barrel prototype combined calorimeter (consisting of a lead-liquid argon electromagnetic part and an iron-scintillator hadronic part) in the framework of the non-parametrical method. The non-parametrical method utilizes only the known e/he/h ratios and the electron calibration constants and does not require the determination of any parameters by a minimization technique. Thus, this technique lends itself to an easy use in a first level trigger. The reconstructed mean values of the hadron energies are within ±1\pm 1% of the true values and the fractional energy resolution is [(58±3)/E+(2.5±0.3)[(58\pm3)% /\sqrt{E}+(2.5\pm0.3)%]\oplus (1.7\pm0.2)/E. The value of the e/he/h ratio obtained for the electromagnetic compartment of the combined calorimeter is 1.74±0.041.74\pm0.04 and agrees with the prediction that e/h>1.7e/h > 1.7 for this electromagnetic calorimeter. Results of a study of the longitudinal hadronic shower development are also presented. The data have been taken in the H8 beam line of the CERN SPS using pions of energies from 10 to 300 GeV.Comment: 33 pages, 13 figures, Will be published in NIM

    Response of the ATLAS tile calorimeter prototype to muons

    Get PDF
    A study of high energy muons traversing the ATLAS hadron Tile calorimeter in the barrel region in the energy range between 10 and 300~GeV is presented. Both test beam experimental data and Monte Carlo simulations are given and show good agreement. The Tile calorimeter capability of detecting isolated muons over the above energy range is demonstrated. A signal to background ratio of about 10 is expected for the nominal LHC luminosity (1034cm2sec110^{34} cm^{-2} sec^{-1}). The photoelectron statistics effect in the muon shape response is shown. The e/mip ratio is found to be 0.81±0.03 0.81 \pm 0.03; the e/μ\mu ratio is in the range 0.91 - 0.97. The energy loss of a muon in the calorimeter, dominated by the energy lost in the absorber, can be correlated to the energy loss in the active material. This correlation allows one to correct on an event by event basis the muon energy loss in the calorimeter and therefore reduce the low energy tails in the muon momentum distribution
    corecore