1,519 research outputs found

    Geometry of phase separation

    Get PDF
    We study the domain geometry during spinodal decomposition of a 50:50 binary mixture in two dimensions. Extending arguments developed to treat non-conserved coarsening, we obtain approximate analytic results for the distribution of domain areas and perimeters during the dynamics. The main approximation is to regard the interfaces separating domains as moving independently. While this is true in the non-conserved case, it is not in the conserved one. Our results can therefore be considered as a first-order approximation for the distributions. In contrast to the celebrated Lifshitz-Slyozov-Wagner distribution of structures of the minority phase in the limit of very small concentration, the distribution of domain areas in the 50:50 case does not have a cut-off. Large structures (areas or perimeters) retain the morphology of a percolative or critical initial condition, for quenches from high temperatures or the critical point respectively. The corresponding distributions are described by a cAτc A^{-\tau} tail, where cc and τ\tau are exactly known. With increasing time, small structures tend to have a spherical shape with a smooth surface before evaporating by diffusion. In this regime the number density of domains with area AA scales as A1/2A^{1/2}, as in the Lifshitz-Slyozov-Wagner theory. The threshold between the small and large regimes is determined by the characteristic area, A[λ(T)t]2/3{\rm A} \sim [\lambda(T) t]^{2/3}. Finally, we study the relation between perimeters and areas and the distribution of boundary lengths, finding results that are consistent with the ones summarized above. We test our predictions with Monte Carlo simulations of the 2d Ising Model.Comment: 10 pages, 8 figure

    Distribuição do carbono nas frações do solo sob área de floresta.

    Get PDF
    As transformações dos sistemas naturais nas regiões tropicais, geralmente cobertas por florestas com grande biomassa representam uma importante causa do aumento da concentração de CO2 atmosférico. Estimou-se a estocagem e a suscetibilidade potencial do carbono no solo do ecossistema sob floresta, até 2 m de profundidade, a partir da determinação da qualidade e a da quantidade do carbono orgânico nas diversas frações do solo em área de floresta primária na Amazônia Central. Fracionou-se a matéria orgânica do solo (MOS) por densidade e granulometria, obtendo-se: FLF (fração leve livre), FLIA (fração leve intra-agregada), F-areia (fração areia), F-argila (fração argila) e F-silte (fração silte). As amostras de solo para o fracionamento e análises físicas foram coletadas em posições topográficas distintas (platô, vertente e baixio), em parcelas de 20 m x 40 m, nas camadas entre 0-5, 5-10, 10-20, 20-40, 40-60, 60-80, 80-100, 100-160 e 160-200 cm de profundidade. Na superfície, o carbono está estocado na fração leve livre (FLF) e em profundidade na fração pesada (F-argila). A distribuição do carbono nas frações do solo foram de 112,6 Mg ha-1 (FLF), 2,5 Mg ha-1 (FLIA), 40,5 Mg ha-1 (F-silte), 56,2 Mg ha-1 (F-argila) e 28,3 Mg ha-1 (F-areia). O carbono orgânico do solo (COS) estocado no platô (Latossolo), vertente (Argissolo) e baixio (Espodossolo) foi de 86,1 Mg ha-1, 72,6 Mg ha-1 e 81,4 Mg ha-1, respectivamente, potencializando uma capacidade de emissão para a atmosfera de 240,1 Mg ha-1

    Soil carbon stocks under amazonian forest: distribution in the soil fractions and vulnerability to emission.

    Get PDF
    Transformations of natural ecosystems in tropical regions, which are usually covered by high-biomass forests, contribute to increased atmospheric CO2. Much of the carbon in forest ecosystems is stored in the soil. This study estimates soil carbon stock in a dense forest in central Amazonia from sets of soil samples collected in three topographic positions (plateau, slope and valley bottom). Soil organic matter (SOM) was fractionated by density and particle size, thus obtaining the free light fraction (FLF), intra-aggregated light fraction (IALF), sand fraction (F-sand), clay fraction (F-clay) and silt fraction (F-silt)

    Technical Note: The CREDIBLE Uncertainty Estimation (CURE) toolbox: facilitating the communication of epistemic uncertainty

    Get PDF
    There is a general trend for increasing inclusion of uncertainty estimation in the environmental modelling domain. We present the CREDIBLE Uncertainty Estimation (CURE) Toolbox, an open source MATLABTM toolbox for uncertainty estimation aimed at scientists and practitioners that are not necessarily experts in uncertainty estimation. The toolbox focusses on environmental simulation models and hence employs a range of different Monte Carlo methods for forward and conditioned uncertainty estimation. The methods included span both formal statistical and informal approaches, which are demonstrated using a range of modelling applications set up as workflow scripts. The workflow scripts provide examples of how to utilise toolbox functions for a variety of modelling applications and hence aid the user in defining their own workflow: additional help is provided by extensively commented code. The toolbox implementation aims to increase the uptake of uncertainty estimation methods within a framework designed to be open and explicit, in a way that tries to represent best practice in applying the methods included. Best practice in the evaluation of modelling assumptions and choices, specifically including epistemic uncertainties, is also included by the incorporation of a condition tree that allows users to record assumptions and choices made as an audit trail log.</p

    Brane matter, hidden or mirror matter, their various avatars and mixings: many faces of the same physics

    Get PDF
    Numerous papers deal with the phenomenology related to photon-hidden photon kinetic mixing and with the effects of a mass mixing on particle-hidden particle oscillations. In addition, recent papers underline the existence of a geometrical mixing between branes which would allow a matter swapping between branes. These approaches and their phenomenologies are reminiscent of each other but rely on different physical concepts. In the present paper, we suggest there is no rivalry between these models, which are probably many faces of the same physics. We discuss some phenomenological consequences of a global framework.Comment: 9 pages. Typo corrected. Published in European Physical Journal

    Exciton swapping in a twisted graphene bilayer as a solid-state realization of a two-brane model

    Get PDF
    It is shown that exciton swapping between two graphene sheets may occur under specific conditions. A magnetically tunable optical filter is described to demonstrate this new effect. Mathematically, it is shown that two turbostratic graphene layers can be described as a "noncommutative" two-sheeted (2+1)-spacetime thanks to a formalism previously introduced for the study of braneworlds in high energy physics. The Hamiltonian of the model contains a coupling term connecting the two layers which is similar to the coupling existing between two braneworlds at a quantum level. In the present case, this term is related to a K-K' intervalley coupling. In addition, the experimental observation of this effect could be a way to assess the relevance of some theoretical concepts of the braneworld hypothesis.Comment: 15 pages, 3 figures, final version published in European Physical Journal

    Increasing and decreasing droplets velocity in micro channels

    Get PDF
    This paper deals with a specific aspect of non miscible liquid-liquid systems in microfluidic. For Chemical Engineering applications, the main constraints of functioning lies in the droplets velocity and frequency. Furthermore, the material used and the composition of the fluids is often imposed by the chemistry of the system (material resistance, fluids composition) and there is no possibility of adding other compound (surfactants for example). A technique under evaluation is presented: by using secondary channels and pumps, it is possible to increase or decrease at will the droplets velocity after they have been generated. Some experimental results are presented and discussed, including the possible limits of such an approach

    CheMin: A Definitive Mineralogy Instrument in the Analytical Laboratory of the Mars Science Laboratory

    Get PDF
    An important goal of the Mars Science Laboratory (MSL '09) mission is the determination of definitive mineralogy and chemical composition. CheMin is a miniature X-ray diffraction/X-ray fluorescence (XRD/XRF) instrument that has been chosen for the analytical laboratory of MSL. CheMin utilizes a miniature microfocus source cobalt X-ray tube, a transmission sample cell and an energy-discriminating X-ray sensitive CCD to produce simultaneous 2-D X-ray diffraction patterns and X-ray fluorescence spectra from powdered or crushed samples. A diagrammatic view of the instrument is shown. Additional information is included in the original extended abstract
    corecore