52 research outputs found

    Input-specific control of reward and aversion in the ventral tegmental area

    Get PDF
    Ventral tegmental area (VTA) dopamine neurons have important roles in adaptive and pathological brain functions related to reward and motivation. However, it is unknown whether subpopulations of VTA dopamine neurons participate in distinct circuits that encode different motivational signatures, and whether inputs to the VTA differentially modulate such circuits. Here we show that, because of differences in synaptic connectivity, activation of inputs to the VTA from the laterodorsal tegmentum and the lateral habenula elicit reward and aversion in mice, respectively. Laterodorsal tegmentum neurons preferentially synapse on dopamine neurons projecting to the nucleus accumbens lateral shell, whereas lateral habenula neurons synapse primarily on dopamine neurons projecting to the medial prefrontal cortex as well as on GABAergic (γ-aminobutyric-acid-containing) neurons in the rostromedial tegmental nucleus. These results establish that distinct VTA circuits generate reward and aversion, and thereby provide a new framework for understanding the circuit basis of adaptive and pathological motivated behaviours.National Institutes of Health (U.S.) (Grant NIH NS069375)JPB FoundationNational Institute of Mental Health (U.S.

    Endogenous cholinergic inputs and local circuit mechanisms govern the phasic mesolimbic dopamine response to nicotine

    Get PDF
    Nicotine exerts its reinforcing action by stimulating nicotinic acetylcholine receptors (nAChRs) and boosting dopamine (DA) output from the ventral tegmental area (VTA). Recent data have led to a debate about the principal pathway of nicotine action: direct stimulation of the DAergic cells through nAChR activation, or disinhibition mediated through desensitization of nAChRs on GABAergic interneurons. We use a computational model of the VTA circuitry and nAChR function to shed light on this issue. Our model illustrates that the α4β2-containing nAChRs either on DA or GABA cells can mediate the acute effects of nicotine. We account for in vitro as well as in vivo data, and predict the conditions necessary for either direct stimulation or disinhibition to be at the origin of DA activity increases. We propose key experiments to disentangle the contribution of both mechanisms. We show that the rate of endogenous acetylcholine input crucially determines the evoked DA response for both mechanisms. Together our results delineate the mechanisms by which the VTA mediates the acute rewarding properties of nicotine and suggest an acetylcholine dependence hypothesis for nicotine reinforcement.Peer reviewe

    Convergent Processing of Both Positive and Negative Motivational Signals by the VTA Dopamine Neuronal Populations

    Get PDF
    Dopamine neurons in the ventral tegmental area (VTA) have been traditionally studied for their roles in reward-related motivation or drug addiction. Here we study how the VTA dopamine neuron population may process fearful and negative experiences as well as reward information in freely behaving mice. Using multi-tetrode recording, we find that up to 89% of the putative dopamine neurons in the VTA exhibit significant activation in response to the conditioned tone that predict food reward, while the same dopamine neuron population also respond to the fearful experiences such as free fall and shake events. The majority of these VTA putative dopamine neurons exhibit suppression and offset-rebound excitation, whereas ∼25% of the recorded putative dopamine neurons show excitation by the fearful events. Importantly, VTA putative dopamine neurons exhibit parametric encoding properties: their firing change durations are proportional to the fearful event durations. In addition, we demonstrate that the contextual information is crucial for these neurons to respectively elicit positive or negative motivational responses by the same conditioned tone. Taken together, our findings suggest that VTA dopamine neurons may employ the convergent encoding strategy for processing both positive and negative experiences, intimately integrating with cues and environmental context

    Neural dynamics of shooting decisions and the switch from freeze to fight

    Get PDF
    Real-life shooting decisions typically occur under acute threat and require fast switching between vigilant situational assessment and immediate fight-or-flight actions. Recent studies suggested that freezing facilitates action preparation and decision-making but the neurocognitive mechanisms remain unclear. We applied functional magnetic resonance imaging, posturographic and autonomic measurements while participants performed a shooting task under threat of shock. two independent studies, in unselected civilians (N = 22) and police recruits (N = 54), revealed that preparation for shooting decisions under threat is associated with postural freezing, bradycardia, midbrain activity (including the periaqueductal gray-PAG) and PAG-amygdala connectivity. Crucially, stronger activity in the midbrain/pAG during this preparatory stage of freezing predicted faster subsequent accurate shooting. Finally, the switch from preparation to active shooting was associated with tachycardia, perigenual anterior cingulate cortex (pgACC) activity and pgACC-amygdala connectivity. These findings suggest that threat-anticipatory midbrain activity centred around the PAG supports decision-making by facilitating action preparation and highlight the role of the pgACC when switching from preparation to action. These results translate animal models of the neural switch from freeze-to-action. In addition, they reveal a core neural circuit for shooting performance under threat and provide empirical evidence for the role of defensive reactions such as freezing in subsequent action decision-making

    Neurodevelopmental Disruption of Cortico-Striatal Function Caused by Degeneration of Habenula Neurons

    Get PDF
    The habenula plays an important role on cognitive and affective functions by regulating monoamines transmission such as the dopamine and serotonin, such that its dysfunction is thought to underlie a number of psychiatric conditions. Given that the monoamine systems are highly vulnerable to neurodevelopmental insults, damages in the habenula during early neurodevelopment may cause devastating effects on the wide-spread brain areas targeted by monoamine innervations.Using a battery of behavioral, anatomical, and biochemical assays, we examined the impacts of neonatal damage in the habenula on neurodevelopmental sequelae of the prefrontal cortex (PFC) and nucleus accumbens (NAcc) and associated behavioral deficits in rodents. Neonatal lesion of the medial and lateral habenula by ibotenic acid produced an assortment of behavioral manifestations consisting of hyper-locomotion, impulsivity, and attention deficit, with hyper-locomotion and impulsivity being observed only in the juvenile period, whereas attention deficit was sustained up until adulthood. Moreover, these behavioral alterations were also improved by amphetamine. Our study further revealed that impulsivity and attention deficit were associated with disruption of PFC volume and dopamine (DA) receptor expression, respectively. In contrast, hyper-locomotion was associated with decreased DA transporter expression in the NAcc. We also found that neonatal administration of nicotine into the habenula of neonatal brains produced selective lesion of the medial habenula. Behavioral deficits with neonatal nicotine administration were similar to those caused by ibotenic acid lesion of both medial and lateral habenula during the juvenile period, whereas they were different in adulthood.Because of similarity between behavioral and brain alterations caused by neonatal insults in the habenula and the symptoms and suggested neuropathology in attention deficit/hyperactivity disorder (ADHD), these results suggest that neurodevelopmental deficits in the habenula and the consequent cortico-striatal dysfunctions may be involved in the pathogenesis and pathophysiology of ADHD

    Coping with unpredictability: Dopaminergic and neurotrophic responses to omission of expected reward in Atlantic salmon (Salmo salar L.).

    Get PDF
    Comparative studies are imperative for understanding the evolution of adaptive neurobiological processes such as neural plasticity, cognition, and emotion. Previously we have reported that prolonged omission of expected rewards (OER, or 'frustrative nonreward') causes increased aggression in Atlantic salmon (Salmo salar). Here we report changes in brain monoaminergic activity and relative abundance of brain derived neurotrophic factor (BDNF) and dopamine receptor mRNA transcripts in the same paradigm. Groups of fish were initially conditioned to associate a flashing light with feeding. Subsequently, the expected food reward was delayed for 30 minutes during two out of three meals per day in the OER treatment, while the previously established routine was maintained in control groups. After 8 days there was no effect of OER on baseline brain stem serotonin (5-HT) or dopamine (DA) activity. Subsequent exposure to acute confinement stress led to increased plasma cortisol and elevated turnover of brain stem DA and 5-HT in all animals. The DA response was potentiated and DA receptor 1 (D1) mRNA abundance was reduced in the OER-exposed fish, indicating a sensitization of the DA system. In addition OER suppressed abundance of BDNF in the telencephalon of non-stressed fish. Regardless of OER treatment, a strong positive correlation between BDNF and D1 mRNA abundance was seen in non-stressed fish. This correlation was disrupted by acute stress, and replaced by a negative correlation between BDNF abundance and plasma cortisol concentration. These observations indicate a conserved link between DA, neurotrophin regulation, and corticosteroid-signaling pathways. The results also emphasize how fish models can be important tools in the study of neural plasticity and responsiveness to environmental unpredictability
    • …
    corecore