1,196 research outputs found

    Inter-layer Hall effect in double quantum wells subject to in-plane magnetic fields

    Full text link
    We report on a theoretical study of the transport properties of two coupled two-dimensional electron systems subject to in-plane magnetic fields. The charge redistribution in double wells induced by the Lorenz force in crossed electric and magnetic fields has been studied. We have found that the redistribution of the charge and the related inter-layer Hall effect originate in the chirality of diamagnetic currents and give a substantial contribution to the conductivity.Comment: 7 RevTex pages, 4 figures, appendix added and misprint in Eq. (11) correcte

    Prolate-Spherical Shape Coexistence at N=28 in 44^{44}S

    Get PDF
    The structure of 44^{44}S has been studied using delayed γ\gamma and electron spectroscopy at \textsc{ganil}. The decay rates of the 02+^+_2 isomeric state to the 21+^+_1 and 01+^+_1 states have been measured for the first time, leading to a reduced transition probability B(E2~:~21+^{+}_1\rightarrow02+)^{+}_2)= 8.4(26)~e2^2fm4^4 and a monopole strength ρ2\rho^2(E0~:~02+^{+}_2\rightarrow01+)^{+}_1) =~8.7(7)×\times103^{-3}. Comparisons to shell model calculations point towards prolate-spherical shape coexistence and a phenomenological two level mixing model is used to extract a weak mixing between the two configurations.Comment: 5 pages, 3 figures, accepted for publication in Physical Review Letter

    A near real-time water surface detection method based on HSV transformation of MODIS multi-Spectral time series data

    Get PDF
    In the face of global population growth and the uneven distribution of water supply, a better knowledge of the spatial and temporal distribution of surface water resources is critical. Remote sensing provides a synoptic view of ongoing processes, which addresses the intricate nature of water surfaces and allows an assessment of the pressures placed on aquatic ecosystems. However, the main challenge in identifying water surfaces from remotely sensed data is the high variability of spectral signatures, both in space and time. In the last 10 years only a few operational methods have been proposed to map or monitor surface water at continental or global scale, and each of them show limitations. The objective of this study is to develop and demonstrate the adequacy of a generic multi-temporal and multi-spectral image analysis method to detect water surfaces automatically, and to monitor them in near-real-time. The proposed approach, based on a transformation of the RGB color space into HSV, provides dynamic information at the continental scale. The validation of the algorithm showed very few omission errors and no commission errors. It demonstrates the ability of the proposed algorithm to perform as effectively as human interpretation of the images. The validation of the permanent water surface product with an independent dataset derived from high resolution imagery, showed an accuracy of 91.5% and few commission errors. Potential applications of the proposed method have been identified and discussed. The methodology that has been developed 27 is generic: it can be applied to sensors with similar bands with good reliability, and minimal effort. Moreover, this experiment at continental scale showed that the methodology is efficient for a large range of environmental conditions. Additional preliminary tests over other continents indicate that the proposed methodology could also be applied at the global scale without too many difficultie

    Structure of 13^{13}Be probed via secondary beam reactions

    Full text link
    The low-lying level structure of the unbound neutron-rich nucleus 13^{13}Be has been investigated via breakup on a carbon target of secondary beams of 14,15^{14,15}B at 35 MeV/nucleon. The coincident detection of the beam velocity 12^{12}Be fragments and neutrons permitted the invariant mass of the 12^{12}Be+nn and 12^{12}Be+nn+nn systems to be reconstructed. In the case of the breakup of 15^{15}B, a very narrow structure at threshold was observed in the 12^{12}Be+nn channel. Contrary to earlier stable beam fragmentation studies which identified this as a strongly interacting ss-wave virtual state in 13^{13}Be, analysis here of the 12^{12}Be+nn+nn events demonstrated that this was an artifact resulting from the sequential-decay of the 14^{14}Be(2+^+) state. Single-proton removal from 14^{14}B was found to populate a broad low-lying structure some 0.70 MeV above the neutron-decay threshold in addition to a less prominent feature at around 2.4 MeV. Based on the selectivity of the reaction and a comparison with (0-3)ω\hbar\omega shell-model calculations, the low-lying structure is concluded to most probably arise from closely spaced Jπ^\pi=1/2+^+ and 5/2+^+ resonances (Er_r=0.40±\pm0.03 and 0.850.11+0.15^{+0.15}_{-0.11} MeV), whilst the broad higher-lying feature is a second 5/2+^+ level (Er_r=2.35±\pm0.14 MeV). Taken in conjunction with earlier studies, it would appear that the lowest 1/2+^+ and 1/2^- levels lie relatively close together below 1 MeV.Comment: 14 pages, 13 figures, 2 tables. Accepted for publication in Physical Review

    Wetland mapping at 10 m resolution reveals fragmentation in southern Nigeria

    Get PDF
    Wetland ecosystems play key roles in global biogeochemical cycling, but their spatial extent and connectivity is often not well known. Here, we detect the spatial coverage and type of wetlands at 10 m resolution across southern Nigeria (total area: 147,094 km2), thought to be one of the most wetland-rich areas of Africa. We use Sentinel-1 and Sentinel-2 imagery supported by 1500 control points for algorithm training and validation. We estimate that the swamps, marshes, mangroves, and shallow water wetlands of southern Nigeria cover 29,924 km2 with 2% uncertainty of 460 km2. We found larger mangrove and smaller marsh extent than suggested by earlier, coarser spatial resolution studies. Average continuous wetland patch areas were 120, 11, 55 and 13 km2 for mangrove, marsh, swamp, and shallow water respectively. Our final map with 10 m pixels captures small patches of wetland which may not have been observed in earlier mapping exercises, with 20% of wetland patches being  250 m pixel dimensions) global wetland datasets and provides data critical for both improving land-surface climate models and for wetland conservation

    Green coloring of GaN single crystals introduced by Cr impurity

    Get PDF
    In this study unintentionally doped GaN grown by hydride vapor phase epitaxy that exhibits a sharply delimited region of green color was investigated. Optical analysis was performed by absorption and photoluminescence spectroscopy. An absorption band between 1.5 and 2.0 eV was found to be responsible for the green color and was related to a sharp emission at 1.193 eV by luminescence and excitation spectroscopy. The appearance of both optical signatures in the region of green color was related to an increase of Cr contamination detected by secondary ion mass spectrometry. We propose that the origin of green color as well as the emission line at 1.193 eV is attributed to internal transitions of Cr⁴⁺

    Isotopic distribution of fission fragments in collisions between 238U beam and 9Be and 12C targets at 24 MeV/u

    Full text link
    Inverse kinematics coupled to a high-resolution spectrometer is used to investigate the isotopic yields of fission fragments produced in reactions between a 238U beam at 24 MeV/u and 9Be and 12C targets. Mass, atomic number and isotopic distributions are reported for the two reactions. These informations give access to the neutron excess and the isotopic distribution widths, which together with the atomic-number and mass distributions are used to investigate the fusion-fission dynamics.Comment: Submitted to PR
    corecore