465 research outputs found
Interstellar OH+, H2O+ and H3O+ along the sight-line to G10.6-0.4
We report the detection of absorption lines by the reactive ions OH+, H2O+
and H3O+ along the line of sight to the submillimeter continuum source
G10.60.4 (W31C). We used the Herschel HIFI instrument in dual beam switch
mode to observe the ground state rotational transitions of OH+ at 971 GHz, H2O+
at 1115 and 607 GHz, and H3O+ at 984 GHz. The resultant spectra show deep
absorption over a broad velocity range that originates in the interstellar
matter along the line of sight to G10.60.4 as well as in the molecular gas
directly associated with that source. The OH+ spectrum reaches saturation over
most velocities corresponding to the foreground gas, while the opacity of the
H2O+ lines remains lower than 1 in the same velocity range, and the H3O+ line
shows only weak absorption. For LSR velocities between 7 and 50 kms we
estimate total column densities of (OH+) cm,
(H2O+) cm and (H3O+) cm. These detections confirm the role of O and OH in
initiating the oxygen chemistry in diffuse molecular gas and strengthen our
understanding of the gas phase production of water. The high ratio of the OH+
by the H2O+ column density implies that these species predominantly trace
low-density gas with a small fraction of hydrogen in molecular form
Strong absorption by interstellar hydrogen fluoride: Herschel/HIFI observations of the sight-line to G10.6-0.4 (W31C)
We report the detection of strong absorption by interstellar hydrogen
fluoride along the sight-line to the submillimeter continuum source G10.6-0.4
(W31C). We have used Herschel's HIFI instrument, in dual beam switch mode, to
observe the 1232.4763 GHz J=1-0 HF transition in the upper sideband of the Band
5a receiver. The resultant spectrum shows weak HF emission from G10.6-0.4 at
LSR velocities in the range -10 to -3 km/s, accompanied by strong absorption by
foreground material at LSR velocities in the range 15 to 50 km/s. The spectrum
is similar to that of the 1113.3430 GHz 1(11)-0(00) transition of para-water,
although at some frequencies the HF (hydrogen fluoride) optical depth clearly
exceeds that of para-H2O. The optically-thick HF absorption that we have
observed places a conservative lower limit of 1.6E+14 cm-2 on the HF column
density along the sight-line to G10.6-0.4. Our lower limit on the HF abundance,
6E-9 relative to hydrogen nuclei, implies that hydrogen fluoride accounts for
between ~ 30 and 100% of the fluorine nuclei in the gas phase along this
sight-line. This observation corroborates theoretical predictions that -
because the unique thermochemistry of fluorine permits the exothermic reaction
of F atoms with molecular hydrogen - HF will be the dominant reservoir of
interstellar fluorine under a wide range of conditions.Comment: Accepted for publication in Astronomy and Astrophysics (Herschel
special issue). This revised version corrects a typographic error in the HTML
abstract, in which the lower limit on the HF abundance (should be 6E-9) was
previously misstated. The abstract in the PDF version is correct and the
latter has not been modifie
Herschel/HIFI observations of interstellar OH+ and H2O+ towards W49N: a probe of diffuse clouds with a small molecular fraction
We report the detection of absorption by interstellar hydroxyl cations and
water cations, along the sight-line to the bright continuum source W49N. We
have used Herschel's HIFI instrument, in dual beam switch mode, to observe the
972 GHz N = 1 - 0 transition of OH+ and the 1115 GHz 1(11) - 0(00) transition
of ortho-H2O+. The resultant spectra show absorption by ortho-H2O+, and strong
absorption by OH+, in foreground material at velocities in the range 0 to 70
km/s with respect to the local standard of rest. The inferred OH+/H2O+
abundance ratio ranges from ~ 3 to ~ 15, implying that the observed OH+ arises
in clouds of small molecular fraction, in the 2 - 8% range. This conclusion is
confirmed by the distribution of OH+ and H2O+ in Doppler velocity space, which
is similar to that of atomic hydrogen, as observed by means of 21 cm absorption
measurements, and dissimilar from that typical of other molecular tracers. The
observed OH+/H abundance ratio of a few E-8 suggests a cosmic ray ionization
rate for atomic hydrogen of (0.6 - 2.4) E-16 s-1, in good agreement with
estimates inferred previously for diffuse clouds in the Galactic disk from
observations of interstellar H3+ and other species.Comment: Accepted for publication in A&A Letter
Biological properties of water-soluble phosphorhydrazone dendrimers
1984-8250Dendrimers are hyperbranched and perfectly defined macromolecules, constituted of branches emanating from a central core in an iterative fashion. Phosphorhydrazone dendrimers constitute a special family of dendrimers, possessing one phosphorus atom at each branching point. The internal structure of these dendrimers is hydrophobic, but hydrophilic terminal groups can induce the solubility of the whole structure in water. Indeed, the properties of these compounds are mainly driven by the type of terminal groups their bear; this is especially true for the biological properties. For instance, positively charged terminal groups are efficient for transfection experiments, as drug carriers, as anti-prion agents, and as inhibitor of the aggregation of Alzheimer's peptides, whereas negatively charged dendrimers have anti-HIV properties and can influence the human immune system, leading to anti-inflammatory properties usable against rheumatoid arthritis. This review will give the most representative examples of the biological properties of water-soluble phosphorhydrazone dendrimers, organized depending on the type of terminal groups they bear
Front-like entire solutions for monostable reaction-diffusion systems
This paper is concerned with front-like entire solutions for monostable
reactiondiffusion systems with cooperative and non-cooperative nonlinearities.
In the cooperative case, the existence and asymptotic behavior of spatially
independent solutions (SIS) are first proved. Combining a SIS and traveling
fronts with different wave speeds and directions, the existence and various
qualitative properties of entire solutions are then established using
comparison principle. In the non-cooperative case, we introduce two auxiliary
cooperative systems and establish some comparison arguments for the three
systems. The existence of entire solutions is then proved via the traveling
fronts and SIS of the auxiliary systems. Our results are applied to some
biological and epidemiological models. To the best of our knowledge, it is the
first work to study the entire solutions of non-cooperative reaction-diffusion
systems
Mechanical Properties of Glassy Polyethylene Nanofibers via Molecular Dynamics Simulations
The extent to which the intrinsic mechanical properties of polymer fibers depend on physical size has been a matter of dispute that is relevant to most nanofiber applications. Here, we report the elastic and plastic properties determined from molecular dynamics simulations of amorphous, glassy polymer nanofibers with diameter ranging from 3.7 to 17.7 nm. We find that, for a given temperature, the Young’s elastic modulus E decreases with fiber radius and can be as much as 52% lower than that of the corresponding bulk material. Poisson’s ratio ν of the polymer comprising these nanofibers was found to decrease from a value of 0.3 to 0.1 with decreasing fiber radius. Our findings also indicate that a small but finite stress exists on the simulated nanofibers prior to elongation, attributable to surface tension. When strained uniaxially up to a tensile strain of ε = 0.2 over the range of strain rates and temperatures considered, the nanofibers exhibit a yield stress σy between 40 and 72 MPa, which is not strongly dependent on fiber radius; this yield stress is approximately half that of the same polyethylene simulated in the amorphous bulk.DuPont MIT AllianceDuPont (Firm) (Young Professor Award
Quality assessment of an interferon-gamma release assay for tuberculosis infection in a resource-limited setting
<p>Abstract</p> <p>Background</p> <p>When a test for diagnosis of infectious diseases is introduced in a resource-limited setting, monitoring quality is a major concern. An optimized design of experiment and statistical models are required for this assessment.</p> <p>Methods</p> <p>Interferon-gamma release assay to detect tuberculosis (TB) infection from whole blood was tested in Hanoi, Viet Nam. Balanced incomplete block design (BIBD) was planned and fixed-effect models with heterogeneous error variance were used for analysis. In the first trial, the whole blood from 12 donors was incubated with nil, TB-specific antigens or mitogen. In 72 measurements, two laboratory members exchanged their roles in harvesting plasma and testing for interferon-gamma release using enzyme linked immunosorbent assay (ELISA) technique. After intervention including checkup of all steps and standard operation procedures, the second trial was implemented in a similar manner.</p> <p>Results</p> <p>The lack of precision in the first trial was clearly demonstrated. Large within-individual error was significantly affected by both harvester and ELISA operator, indicating that both of the steps had problems. After the intervention, overall within-individual error was significantly reduced (<it>P </it>< 0.0001) and error variance was no longer affected by laboratory personnel in charge, indicating that a marked improvement could be objectively observed.</p> <p>Conclusion</p> <p>BIBD and analysis of fixed-effect models with heterogeneous variance are suitable and useful for objective and individualized assessment of proficiency in a multistep diagnostic test for infectious diseases in a resource-constrained laboratory. The action plan based on our findings would be worth considering when monitoring for internal quality control is difficult on site.</p
- …