45 research outputs found

    Characterization of S3Pvac Anti-Cysticercosis Vaccine Components: Implications for the Development of an Anti-Cestodiasis Vaccine

    Get PDF
    Background: Cysticercosis and hydatidosis seriously affect human health and are responsible for considerable economic loss in animal husbandry in non-developed and developed countries. S3Pvac and EG95 are the only field trial-tested vaccine candidates against cysticercosis and hydatidosis, respectively. S3Pvac is composed of three peptides (KETc1, GK1 and KETc12), originally identified in a Taenia crassiceps cDNA library. S3Pvac synthetically and recombinantly expressed is effective against experimentally and naturally acquired cysticercosis.Methodology/ Principal Findings: In this study, the homologous sequences of two of the S3Pvac peptides, GK1 and KETc1, were identified and further characterized in Taenia crassiceps WFU, Taenia solium, Taenia saginata, Echinococcus granulosus and Echinococcus multilocularis. Comparisons of the nucleotide and amino acid sequences coding for KETc1 and GK1 revealed significant homologies in these species. The predicted secondary structure of GK1 is almost identical between the species, while some differences were observed in the C terminal region of KETc1 according to 3D modeling. A KETc1 variant with a deletion of three C-terminal amino acids protected to the same extent against experimental murine cysticercosis as the entire peptide. on the contrary, immunization with the truncated GK1 failed to induce protection. Immunolocalization studies revealed the non stage-specificity of the two S3Pvac epitopes and their persistence in the larval tegument of all species and in Taenia adult tapeworms.Conclusions/ Significance: These results indicate that GK1 and KETc1 may be considered candidates to be included in the formulation of a multivalent and multistage vaccine against these cestodiases because of their enhancing effects on other available vaccine candidates

    Identifying water stress-response mechanisms in citrus by in silico transcriptome analysis

    Full text link

    Taxonomy based on science is necessary for global conservation

    Get PDF
    Peer reviewe

    Rapid identification of Arabidopsis insertion mutants by non- radioactive detection of T-DNA tagged genes

    No full text
    To assist in the analysis of plant gene functions we have generated a new Arabidopsis insertion mutant collection of 90 000 lines that carry the T-DNA of Agrobacterium gene fusion vector pPCV6NFHyg. Segregation analysis indicates that the average frequency of insertion sites is 1.29 per line, predicting about 116 100 independent tagged loci in the collection. The average T-DNA copy number estimated by Southern DNA hybridization is 2.4, as over 50% of the insertion loci contain tandem T-DNA copies. The collection is pooled in two arrays providing 40 PCR templates, each containing DNA from either 4000 or 5000 individual plants. A rapid and sensitive PCR technique using high-quality template DNA accelerates the identification of T-DNA tagged genes without DNA hybridization. The PCR screening is performed by agarose gel electrophoresis followed by isolation and direct sequencing of DNA fragments of amplified T-DNA insert junctions. To estimate the mutation recovery rate, 39 700 lines have been screened for T-DNA tags in 154 genes yielding 87 confirmed mutations in 73 target genes. Screening the whole collection with both T-DNA border primers requires 170 PCR reactions that are expected to detect a mutation in a gene with at least twofold redundancy and an estimated probability of 77%. Using this technique, an M (2) family segregating a characterized gene mutation can be identified within 4 weeks
    corecore