47 research outputs found

    Genotyping of Plasmodium falciparum infections by PCR: a comparative multicentre study

    Get PDF
    Genetic diversity of malaria parasites represents a major issue in understanding several aspects of malaria infection and disease. Genotyping of Plasmodium falciparum infections with polymerase chain reaction (PCR)-based methods has therefore been introduced in epidemiological studies. Polymorphic regions of the msp1, msp2 and glurp genes are the most frequently used markers for genotyping, but methods may differ. A multicentre study was therefore conducted to evaluate the comparability of results from different laboratories when the same samples were analysed. Analyses of laboratory-cloned lines revealed high specificity but varying sensitivity. Detection of low-density clones was hampered in multiclonal infections. Analyses of isolates from Tanzania and Papua New Guinea revealed similar positivity rates with the same allelic types identified. The number of alleles detected per isolate, however, varied systematically between the laboratories especially at high parasite densities. When the analyses were repeated within the laboratories, high agreement was found in getting positive or negative results but with a random variation in the number of alleles detected. The msp2 locus appeared to be the most informative single marker for analyses of multiplicity of infection. Genotyping by PCR is a powerful tool for studies on genetic diversity of P. falciparum but this study has revealed limitations in comparing results on multiplicity of infection derived from different laboratories and emphasizes the need for highly standardized laboratory protocol

    Contour identical implants to bridge mandibular continuity defects - individually generated by LaserCUSINGÂź - A feasibility study in animal cadavers

    Get PDF
    Background Ablative tumor surgery often results in continuity defects of the mandible. When an immediate reconstruction using autologous bone grafts is not possible the bridging of the defects with a variety of bridging plates might be achieved. However, those bridging plates have the risk of plate fractures or exposure. Customized titanium implants manufactured using CAD/CAM and the LaserCUSINGÂź technique might be an alternative. Methods In the present study, computed tomographies (CT) of porcine cadaver mandibles were generated and transferred into DICOM data. Following, different continuity defects were surgically created in the mandibles. Based on the DICOM data customized titanium implants were manufactured using CAD/CAM procedures and the LaserCUSINGÂź technique. The implants were fixed to the remaining stumps with screws. Subsequently, the accuracy of the reconstructed mandibles was tested using plaster casts. Results The workflow from the CT to the application of the customized implants was proved to be practicable. Furthermore, a stable fixation of the customized implant to the remaining stumps could be achieved. The control of the accuracy showed no frictions or obstacles. Conclusion The customized titanium implant seems to be a promising approach to bridge continuity defects of the mandible whenever an immediate reconstruction with autologous bone is not possible

    Surgical Application of Human Amniotic Membrane and Amnion-Chorion Membrane in the Oral Cavity and Efficacy Evaluation: Corollary With Ophthalmological and Wound Healing Experiences

    Get PDF
    Due to its intrinsic properties, there has been growing interest in human amniotic membrane (hAM) in recent years particularly for the treatment of ocular surface disorders and for wound healing. Herein, we investigate the potential use of hAM and amnion-chorion membrane (ACM) in oral surgery. Based on our analysis of the literature, it appears that their applications are very poorly defined. There are two options: implantation or use as a cover material graft. The oral cavity is submitted to various mechanical and biological stimulations that impair membrane stability and maintenance. Thus, some devices have been combined with the graft to secure its positioning and protect it in this location. This current opinion paper addresses in detail suitable procedures for hAM and ACM utilization in soft and hard tissue reconstruction in the oral cavity. We address their implantation and/or use as a covering, storage format, application side, size and number, multilayer use or folding, suture or use of additional protective covers, re-application and resorption/fate. We gathered evidence on pre- and post-surgical care and evaluation tools. Finally, we integrated ophthalmological and wound healing practices into the collected information. This review aims to help practitioners and researchers better understand the application of hAM and ACM in the oral cavity, a place less easily accessible than ocular or cutaneous surfaces. Additionally, it could be a useful reference in the generation of new ideas for the development of innovative protective covering, suturing or handling devices in this specific indication. Finally, this overview could be considered as a position paper to guide investigators to fulfill all the identified criteria in the future

    Optimization and validation of multi-coloured capillary electrophoresis for genotyping of Plasmodium falciparum merozoite surface proteins (msp1 and 2)

    Get PDF
    BACKGROUND: Genotyping of Plasmodium falciparum based on PCR amplification of the polymorphic genes encoding the merozoite surface proteins 1 and 2 (msp1 and msp2) is well established in the field of malaria research to determine the number and types of concurrent clones in an infection. Genotyping is regarded essential in anti-malarial drug trials to define treatment outcome, by distinguishing recrudescent parasites from new infections. Because of the limitations in specificity and resolution of gel electrophoresis used for fragment analysis in most genotyping assays it became necessary to improve the methodology. An alternative technique for fragment analysis is capillary electrophoresis (CE) performed using automated DNA sequencers. Here, one of the most widely-used protocols for genotyping of P. falciparum msp1 and msp2 has been adapted to the CE technique. The protocol and optimization process as well as the potentials and limitations of the technique in molecular epidemiology studies and anti-malarial drug trials are reported. METHODS: The original genotyping assay was adapted by fluorescent labeling of the msp1 and msp2 allelic type specific primers in the nested PCR and analysis of the final PCR products in a DNA sequencer. A substantial optimization of the fluorescent assay was performed. The CE method was validated using known mixtures of laboratory lines and field samples from Ghana and Tanzania, and compared to the original PCR assay with gel electrophoresis. RESULTS: The CE-based method showed high precision and reproducibility in determining fragment size (< 1 bp). More genotypes were detected in mixtures of laboratory lines and blood samples from malaria infected children, compared to gel electrophoresis. The capacity to distinguish recrudescent parasites from new infections in an anti-malarial drug trial was similar by both methods, resulting in the same outcome classification, however with more precise determination by CE. CONCLUSION: The improved resolution and reproducibility of CE in fragment sizing allows for comparison of alleles between separate runs and determination of allele frequencies in a population. The more detailed characterization of individual msp1 and msp2 genotypes may contribute to improved assessments in anti-malarial drug trials and to a further understanding of the molecular epidemiology of these polymorphic P. falciparum antigens

    Pre-Clinical Assessment of Novel Multivalent MSP3 Malaria Vaccine Constructs

    Get PDF
    BACKGROUND: MSP3 has been shown to induce protection against malaria in African children. The characterization of a family of Plasmodium falciparum merozoite surface protein 3 (MSP3) antigens sharing a similar structural organization, simultaneously expressed on the merozoite surface and targeted by a cross-reactive network of protective antibodies, is intriguing and offers new perspectives for the development of subunit vaccines against malaria. METHODS: Eight recombinant polyproteins containing carefully selected regions of this family covalently linked in different combinations were all efficiently produced in Escherichia coli. The polyproteins consisted of one monovalent, one bivalent, one trivalent, two tetravalents, one hexavalent construct, and two tetravalents incorporating coiled-coil repeats regions from LSA3 and p27 vaccine candidates. RESULTS: All eight polyproteins induced a strong and homogeneous antibody response in mice of three distinct genotypes, with a dominance of cytophilic IgG subclasses, lasting up to six months after the last immunization. Vaccine-induced antibodies exerted a strong monocyte-mediated in vitro inhibition of P. falciparum growth. Naturally acquired antibodies from individuals living in an endemic area of Senegal recognized the polyproteins with a reactivity mainly constituted of cytophilic IgG subclasses. CONCLUSIONS: Combination of genetically conserved and antigenically related MSP3 proteins provides promising subunit vaccine constructs, with improved features as compared to the first generation construct employed in clinical trials (MSP3-LSP). These multivalent MSP3 vaccine constructs expand the epitope display of MSP3 family proteins, and lead to the efficient induction of a wider range of antibody subclasses, even in genetically different mice. These findings are promising for future immunization of genetically diverse human populations

    Characterization of Within-Host Plasmodium falciparum Diversity Using Next-Generation Sequence Data

    Get PDF
    Our understanding of the composition of multi-clonal malarial infections and the epidemiological factors which shape their diversity remain poorly understood. Traditionally within-host diversity has been defined in terms of the multiplicity of infection (MOI) derived by PCR-based genotyping. Massively parallel, single molecule sequencing technologies now enable individual read counts to be derived on genome-wide datasets facilitating the development of new statistical approaches to describe within-host diversity. In this class of measures the FWS metric characterizes within-host diversity and its relationship to population level diversity. Utilizing P. falciparum field isolates from patients in West Africa we here explore the relationship between the traditional MOI and FWS approaches. FWS statistics were derived from read count data at 86,158 SNPs in 64 samples sequenced on the Illumina GA platform. MOI estimates were derived by PCR at the msp-1 and -2 loci. Significant correlations were observed between the two measures, particularly with the msp-1 locus (P = 5.92×10−5). The FWS metric should be more robust than the PCR-based approach owing to reduced sensitivity to potential locus-specific artifacts. Furthermore the FWS metric captures information on a range of parameters which influence out-crossing risk including the number of clones (MOI), their relative proportions and genetic divergence. This approach should provide novel insights into the factors which correlate with, and shape within-host diversity

    Multiplicity of Plasmodium falciparum infection in asymptomatic children in Senegal: relation to transmission, age and erythrocyte variants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Individuals living in malaria endemic areas generally harbour multiple parasite strains. Multiplicity of infection (MOI) can be an indicator of immune status. However, whether this is good or bad for the development of immunity to malaria, is still a matter of debate. This study aimed to examine the MOI in asymptomatic children between two and ten years of age and to relate it to erythrocyte variants, clinical attacks, transmission levels and other parasitological indexes.</p> <p>Methods</p> <p>Study took place in Niakhar area in Senegal, where malaria is mesoendemic and seasonal. Three hundred and seventy two asymptomatic children were included. Sickle-cell trait, G6PD deficiency (A- and Santamaria) and α<sup>+</sup>-thalassaemia (-α<sup>3.7 </sup>type) were determined using PCR. Multiplicity of <it>Plasmodium falciparum </it>infection, i.e. number of concurrent clones, was defined by PCR-based genotyping of the merozoite surface protein-2 (<it>msp2</it>), before and at the end of the malaria transmission season. The χ<sup>2</sup>-test, ANOVA, multivariate linear regression and logistic regression statistical tests were used for data analysis.</p> <p>Results</p> <p>MOI was significantly higher at the end of transmission season. The majority of PCR positive subjects had multiple infections at both time points (64% before and 87% after the transmission season). MOI did not increase in α-thalassaemic and G6PD mutated children. The ABO system and HbAS did not affect MOI at any time points. No association between MOI and clinical attack was observed. MOI did not vary over age at any time points. There was a significant correlation between MOI and parasite density, as the higher parasite counts increases the probability of having multiple infections.</p> <p>Conclusion</p> <p>Taken together our data revealed that α-thalassaemia may have a role in protection against certain parasite strains. The protection against the increase in MOI after the transmission season conferred by G6PD deficiency is probably due to clearance of the malaria parasite at early stages of infection. The ABO system and HbAS are involved in the severity of the disease but do not affect asymptomatic infections. MOI was not age-dependent, in the range of two to ten years, but was correlated with parasite density. However some of these observations need to be confirmed including larger sample size with broader age range and using other <it>msp2 </it>genotyping method.</p

    Genetic structure of Plasmodium falciparum field isolates in eastern and north-eastern India

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Molecular techniques have facilitated the studies on genetic diversity of <it>Plasmodium </it>species particularly from field isolates collected directly from patients. The <it>msp-1 </it>and <it>msp-2 </it>are highly polymorphic markers and the large allelic polymorphism has been reported in the block 2 of the <it>msp-1 </it>gene and the central repetitive domain (block3) of the <it>msp-2 </it>gene. Families differing in nucleotide sequences and in number of repetitive sequences (length variation) were used for genotyping purposes. As limited reports are available on the genetic diversity existing among <it>Plasmodium falciparum </it>population of India, this report evaluates the extent of genetic diversity in the field isolates of <it>P. falciparum </it>in eastern and north-eastern regions of India.</p> <p>Methods</p> <p>A study was designed to assess the diversity of <it>msp-1 </it>and <it>msp-2 </it>among the field isolates from India using allele specific nested PCR assays and sequence analysis. Field isolates were collected from five sites distributed in three states namely, Assam, West Bengal and Orissa.</p> <p>Results</p> <p><it>P. falciparum </it>isolates of the study sites are highly diverse in respect of length as well as sequence motifs with prevalence of all the reported allelic families of <it>msp-1 </it>and <it>msp-2</it>. Prevalence of identical allelic composition as well as high level of sequence identity of alleles suggest a considerable amount of gene flow between the <it>P. falciparum </it>populations of different states. A comparatively higher proportion of multiclonal isolates as well as multiplicity of infection (MOI) was observed among isolates of highly malarious districts Karbi Anglong (Assam) and Sundergarh (Orissa). In all the five sites, R033 family of <it>msp-1 </it>was observed to be monomorphic with an allele size of 150/160 bp. The observed 80–90% sequence identity of Indian isolates with data of other regions suggests that Indian <it>P. falciparum </it>population is a mixture of different strains.</p> <p>Conclusion</p> <p>The present study shows that the field isolates of eastern and north-eastern regions of India are highly diverse in respect of <it>msp-1 </it>(block 2) and <it>msp-2 </it>(central repeat region, block 3). As expected Indian isolates present a picture of diversity closer to southeast Asia, Papua New Guinea and Latin American countries, regions with low to meso-endemicity of malaria in comparison to African regions of hyper- to holo-endemicity.</p

    Malaria infection and disease in an area with pyrethroid-resistant vectors in southern Benin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study aimed to investigate baseline data on malaria before the evaluation of new vector control strategies in an area of pyrethroid-resistance of vectors. The burden of malaria was estimated in terms of infection (prevalence and parasite density) and of clinical episodes.</p> <p>Methods</p> <p>Between December 2007 and December 2008 in the health district of Ouidah - KpomassĂš - Tori Bossito (southern Benin), a descriptive epidemiological survey of malaria was conducted. From 28 selected villages, seven were randomized from which a total of 440 children aged 0 to 5 years were randomly selected. Clinical and parasitological information was obtained by active case detection of malaria episodes carried out during eight periods of six consecutive days scheduled at six weekly intervals and by cross-sectional surveys of asymptomatic infection. Entomological information was also collected. The ownership, the use and the correct use of long-lasting insecticide-treated nets (LLINs) were checked over weekly-survey by unannounced visits at home in the late evening.</p> <p>Results</p> <p>Mean parasite density in asymptomatic children was 586 <it>P. falciparum </it>asexual forms per ÎŒL of blood (95%CI 504-680). Pyrogenic parasite cut-off was estimated 2,000 <it>P. falciparum </it>asexual blood forms per ÎŒL. The clinical incidence of malaria was 1.5 episodes per child per year (95%CI 1.2-1.9). Parasitological and clinical variables did not vary with season. <it>Anopheles gambiae </it><it>s.l</it>. was the principal vector closely followed by <it>Anopheles funestus</it>. Entomological inoculation rate was 5.3 (95%CI 1.1-25.9) infective bites per human per year. Frequency of the L1014F <it>kdr </it>(West) allele was around 50%. Annual prevalence rate of <it>Plasmodium falciparum </it>asymptomatic infection was 21.8% (95%CI 19.1-24.4) and increased according to age. Mean rates of ownership and use of LLINs were 92% and 70% respectively. The only correct use of LLINs (63%) conferred 26% individual protection against only infection (OR = 0.74 (95%IC 0.62-0.87), p = 0.005).</p> <p>Conclusion</p> <p>The health district of Ouidah-KpomassĂš-Tori Bossito is a mesoendemic area with a moderate level of pyrethroid-resistance of vectors. The used LLINs rate was high and only the correct use of LLINs was found to reduce malaria infection without influencing malaria morbidity.</p

    Placental Plasmodium falciparum malaria infection: Operational accuracy of HRP2 rapid diagnostic tests in a malaria endemic setting

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria has a negative effect on the outcome of pregnancy. Pregnant women are at high risk of severe malaria and severe haemolytic anaemia, which contribute 60-70% of foetal and perinatal losses. Peripheral blood smear microscopy under-estimates sequestered placental infections, therefore malaria rapid diagnostic tests (RDTs) detecting histidine rich protein-2 antigen (HRP-2) in peripheral blood are a potential alternative.</p> <p>Methods</p> <p>HRP-2 RDTs accuracy in detecting malaria in pregnancy (MIP >28 weeks gestation) and placental <it>Plasmodium falciparum </it>malaria (after childbirth) were conducted using Giemsa microscopy and placental histopathology respectively as the reference standard. The study was conducted in Mbale Hospital, using the midwives to perform and interpret the RDT results. Discordant results samples were spot checked using PCR techniques.</p> <p>Results</p> <p>Among 433 febrile women tested, RDTs had a sensitivity of 96.8% (95% CI 92-98.8), specificity of 73.5% (95% CI 67.8-78.6), a positive predictive value (PPV) of 68.0% (95% CI 61.4-73.9), and negative predictive value (NPV) of 97.5% (95% CI 94.0-99.0) in detecting peripheral <it>P. falciparum </it>malaria during pregnancy. At delivery, in non-symptomatic women, RDTs had a 80.9% sensitivity (95% CI 57.4-93.7) and a 87.5% specificity (95%CI 80.9-92.1), PPV of 47.2% (95% CI 30.7-64.2) and NPV of 97.1% (95% CI 92.2-99.1) in detecting placental <it>P. falciparum </it>infections among 173 samples. At delivery, 41% of peripheral infections were detected by microscopy without concurrent placental infection. The combination of RDTs and microscopy improved the sensitivity to 90.5% and the specificity to 98.4% for detecting placental malaria infection (McNemar's <it>X </it><sup>2</sup>> 3.84). RDTs were not superior to microscopy in detecting placental infection (McNemar's <it>X </it><sup>2</sup>< 3.84). Presence of malaria in pregnancy and active placental malaria infection were 38% and 12% respectively. Placental infections were associated with poor pregnancy outcome [pre-term, still birth and low birth weight] (aOR = 37.9) and late pregnancy malaria infection (aOR = 20.9). Mosquito net use (aOR 2.1) and increasing parity (aOR 2.7) were associated with lower risk for malaria in pregnancy.</p> <p>Conclusion</p> <p>Use of HRP-2 RDTs to detect malaria in pregnancy in symptomatic women was accurate when performed by midwives. A combination of RDTs and microscopy provided the best means of detecting placental malaria. RDTs were not superior to microscopy in detecting placental infection. With a high sensitivity and specificity, RDTs could be a useful tool for assessing malaria in pregnancy, with further (cost-) effectiveness studies.</p
    corecore