60 research outputs found

    Structure functions and intermittency in ionospheric plasma turbulence

    Get PDF
    Low frequency electrostatic turbulence in the ionospheric E-region is studied by means of numerical and experimental methods. We use the structure functions of the electrostatic potential as a diagnostics of the fluctuations. We demonstrate the inherently intermittent nature of the low level turbulence in the collisional ionospheric plasma by using results for the space-time varying electrostatic potential from two dimensional numerical simulations. An instrumented rocket can not directly detect the one-point potential variation, and most measurements rely on records of potential differences between two probes. With reference to the space observations we demonstrate that the results obtained by potential difference measurements can differ significantly from the one-point results. It was found, in particular, that the intermittency signatures become much weaker, when the proper rocket-probe configuration is implemented. We analyze also signals from an actual ionospheric rocket experiment, and find a reasonably good agreement with the appropriate simulation results, demonstrating again that rocket data, obtained as those analyzed here, are unlikely to give an adequate representation of intermittent features of the low frequency ionospheric plasma turbulence for the given conditions

    Low-frequency electrostatic waves in the ionospheric E-region: a comparison of rocket observations and numerical simulations

    Get PDF
    International audienceLow frequency electrostatic waves in the lower parts of the ionosphere are studied by a comparison of observations by instrumented rockets and of results from numerical simulations. Particular attention is given to the spectral properties of the waves. On the basis of a good agreement between the observations and the simulations, it can be argued that the most important nonlinear dynamics can be accounted for in a 2-D numerical model, referring to a plane perpendicular to a locally homogeneous magnetic field. It does not seem necessary to take into account turbulent fluctuations or motions in the neutral gas component. The numerical simulations explain the observed strongly intermittent nature of the fluctuations: secondary instabilities develop on the large scale gradients of the largest amplitude waves, and the small scale dynamics is strongly influenced by these secondary instabilities. We compare potential variations obtained at a single position in the numerical simulations with two point potential-difference signals, where the latter is the adequate representation for the data obtained by instrumented rockets. We can demonstrate a significant reduction in the amount of information concerning the plasma turbulence when the latter signal is used for analysis. In particular we show that the bicoherence estimate is strongly affected. The conclusions have implications for studies of low frequency ionospheric fluctuations in the E and F regions by instrumented rockets, and also for other methods relying on difference measurements, using two probes with large separation. The analysis also resolves a long standing controversy concerning the supersonic phase velocities of these cross-field instabilities being observed in laboratory experiments

    Tackling ionospheric scintillation threat to GNSS in Latin America

    Get PDF
    Scintillations are rapid fluctuations in the phase and amplitude of transionospheric radio signals which are caused by small-scale plasma density irregularities in the ionosphere. In the case of the Global Navigation Satellite System (GNSS) receivers, scintillation can cause cycle slips, degrade the positioning accuracy and, when severe enough, can even lead to a complete loss of signal lock. Thus, the required levels of availability, accuracy, integrity and reliability for the GNSS applications may not be met during scintillation occurrence; this poses a major threat to a large number of modern-day GNSS-based applications. The whole of Latin America, Brazil in particular, is located in one of the regions most affected by scintillations. These effects will be exacerbated during solar maxima, the next predicted for 2013. This paper presents initial results from a research work aimed to tackle ionospheric scintillation effects for GNSS users in Latin America. This research is a part of the CIGALA (Concept for Ionospheric Scintillation Mitigation for Professional GNSS in Latin America) project, co-funded by the EC Seventh Framework Program and supervised by the GNSS Supervisory Authority (GSA), which aims to develop and test ionospheric scintillation countermeasures to be implemented in multi-frequency, multi-constellation GNSS receivers

    Anisotropic scaling features and complexity in magnetospheric-cusp: a case study

    Get PDF
    Magnetospheric cusps are high-latitude regions characterized by a highly turbulent plasma, playing a special role in the solar wind-magnetosphere interaction. Here, using POLAR satellite magnetic field vector measurements we investigate the anisotropic scaling features of the magnetic field fluctuations in the northern cusp region. Our results seem to support the hypothesis of a 2D-MHD turbulent scenario which is consequence of a strong background magnetic field. The observed turbulent fluctuations reveal a high degree of complexity, which might be due to the interplay of many competing scales. A discussion of our findings in connection with the complex scenario proposed by Chang et al. (2004) is provided

    Ionospheric scintillation monitoring and modelling

    Get PDF
    This paper presents a review of the ionospheric scintillation monitoring and modelling by the European groups involved in COST 296. Several of these groups have organized scintillation measurement campaigns at low and high latitudes. Some characteristic results obtained from the measured data are presented. The paper also addresses the modeling activities: four models, based on phase screen techniques, with different options and application domains are detailed. Finally some new trends for research topics are given. This includes the wavelet analysis, the high latitudes analysis, the construction of scintillation maps and the mitigation techniques

    Influence of adding multiwalled carbon nanotubes on the adhesive strength of composite epoxy/sol–gel materials

    Get PDF
    The tensile shear strength of a composite epoxy/sol–gel system modified with different ratios of multiwall carbon nanotubes (MWCNTs) was evaluated using a mechanical testing machine. The experimental results showed that the shear strength increased when lower than ~0.07 wt% of MWCNTs were added in the composite solution. The increase of the shear strength was attributed to both the mechanical load transfer from the matrix to the MWCNTs and the high specific surface area of this material that increased the degree of crosslinking with other inorganic fillers in the formulation. However, a decrease in the adhesive shear strength was observed after more than ~0.07 wt% MWCNTs were added to the composite. The reason for this may be related to the high concentration of MWCNTs within the matrix leading to excessively high viscosity, dewetting of the substrate surfaces, and reduced bonding of MWCNTs with the matrix, thereby limiting the strength. SEM observation of the fracture surfaces for composite epoxy/sol–gel adhesive materials with 0.01 wt% MWCNTs showed a mixed interfacial/cohesive fracture mode. This fracture mode indicated strong links at the adhesive/substrate interface, and interaction between CNTs and the matrix was achieved; therefore, adhesion performance of the composite epoxy/sol–gel material to the substrate was improved. An increase of a strong peak related to the C–O bond at ~1733 cm-1 in the FTIR spectra was observed. This peak represented crosslinking between the CNT surface and the organosilica nanoparticles in the MWCNTs-doped composite adhesive. Raman spectroscopy was also used to identify MWCNTs within the adhesive material. The Raman spectra exhibit peaks at ~1275 cm-1 and in the range of ~1549–1590 cm-1. The former is the graphite G-band, while the latter is the diamond D-band. The D-band and G-band represent the C–C single bond and C=C double bond in carbon nanotubes, respectively

    Tackling ionospheric scintillation threat to GNSS in Latin America

    Get PDF
    Scintillations are rapid fluctuations in the phase and amplitude of transionospheric radio signals which are caused by small-scale plasma density irregularities in the ionosphere. In the case of the Global Navigation Satellite System (GNSS) receivers, scintillation can cause cycle slips, degrade the positioning accuracy and, when severe enough, can even lead to a complete loss of signal lock. Thus, the required levels of availability, accuracy, integrity and reliability for the GNSS applications may not be met during scintillation occurrence; this poses a major threat to a large number of modern-day GNSS-based applications. The whole of Latin America, Brazil in particular, is located in one of the regions most affected by scintillations. These effects will be exacerbated during solar maxima, the next predicted for 2013. This paper presents initial results from a research work aimed to tackle ionospheric scintillation effects for GNSS users in Latin America. This research is a part of the CIGALA (Concept for Ionospheric Scintillation Mitigation for Professional GNSS in Latin America) project, co-funded by the EC Seventh Framework Program and supervised by the GNSS Supervisory Authority (GSA), which aims to develop and test ionospheric scintillation countermeasures to be implemented in multi-frequency, multi-constellation GNSS receivers

    Power spectrum analysis of ionospheric fluctuations with the Murchison Widefield Array

    Get PDF
    Low-frequency, wide field-of-view (FOV) radio telescopes such as the Murchison Widefield Array (MWA) enable the ionosphere to be sampled at high spatial completeness. We present the results of the first power spectrum analysis of ionospheric fluctuations in MWA data, where we examined the position offsets of radio sources appearing in two data sets. The refractive shifts in the positions of celestial sources are proportional to spatial gradients in the electron column density transverse to the line of sight. These can be used to probe plasma structures and waves in the ionosphere. The regional (10–100 km) scales probed by the MWA, determined by the size of its FOV and the spatial density of radio sources (typically thousands in a single FOV), complement the global (100–1000 km) scales of GPS studies and local (0.01–1 km) scales of radar scattering measurements. Our data exhibit a range of complex structures and waves. Some fluctuations have the characteristics of traveling ionospheric disturbances, while others take the form of narrow, slowly drifting bands aligned along the Earth's magnetic field
    • …
    corecore