100 research outputs found

    Galactose Epimerase Deficiency: Expanding the Phenotype

    Get PDF
    Galactose epimerase deficiency is an inborn error of metabolism due to uridine diphosphate-galactose-4'-epimerase (GALE) deficiency. We report the clinical presentation, genetic and biochemical studies in two siblings with generalized GALE deficiency.Patient 1: The first child was born with a dysmorphic syndrome. Failure to thrive was noticed during the first year. Episodes of heart failure due to dilated cardiomyopathy, followed by liver failure, occurred between 12 and 42 months. The finding of a serum transferrin isoelectrofocusing (IEF) type 1 pattern led to the suspicion of a congenital disorder of glycosylation (CDG). Follow-up disclosed psychomotor disability, deafness, and nuclear cataracts.Patient 2: The sibling of patient 1 was born with short limbs and hip dysplasia. She is deceased in the neonatal period due to intraventricular hemorrhage in the context of liver failure. Investigation disclosed galactosuria and normal transferrin glycosylation.Next-generation sequence panel analysis for CDG syndrome revealed the previously reported c.280G>A (p.[V94M]) homozygous mutation in the GALE gene. Enzymatic studies in erythrocytes (patient 1) and fibroblasts (patients 1 and 2) revealed markedly reduced GALE activity confirming generalized GALE deficiency. This report describes the fourth family with generalized GALE deficiency, expanding the clinical spectrum of this disorder, since major cardiac involvement has not been reported before.info:eu-repo/semantics/publishedVersio

    Role of Position 627 of PB2 and the Multibasic Cleavage Site of the Hemagglutinin in the Virulence of H5N1 Avian Influenza Virus in Chickens and Ducks

    Get PDF
    Highly pathogenic H5N1 avian influenza viruses have caused major disease outbreaks in domestic and free-living birds with transmission to humans resulting in 59% mortality amongst 564 cases. The mutation of the amino acid at position 627 of the viral polymerase basic-2 protein (PB2) from glutamic acid (E) in avian isolates to lysine (K) in human isolates is frequently found, but it is not known if this change affects the fitness and pathogenicity of the virus in birds. We show here that horizontal transmission of A/Vietnam/1203/2004 H5N1 (VN/1203) virus in chickens and ducks was not affected by the change of K to E at PB2-627. All chickens died between 21 to 48 hours post infection (pi), while 70% of the ducks survived infection. Virus replication was detected in chickens within 12 hours pi and reached peak titers in spleen, lung and brain between 18 to 24 hours for both viruses. Viral antigen in chickens was predominantly in the endothelium, while in ducks it was present in multiple cell types, including neurons, myocardium, skeletal muscle and connective tissues. Virus replicated to a high titer in chicken thrombocytes and caused upregulation of TLR3 and several cell adhesion molecules, which may explain the rapid virus dissemination and location of viral antigen in endothelium. Virus replication in ducks reached peak values between 2 and 4 days pi in spleen, lung and brain tissues and in contrast to infection in chickens, thrombocytes were not involved. In addition, infection of chickens with low pathogenic VN/1203 caused neuropathology, with E at position PB2-627 causing significantly higher infection rates than K, indicating that it enhances virulence in chickens

    Increased transcriptional activity of prostate-specific antigen in the presence of TNP-470, an angiogenesis inhibitor

    Get PDF
    Prostate-specific antigen, PSA, is regarded as a reliable surrogate marker for androgen-independent prostate cancer (AIPC). Concern has been raised that investigational agents may affect PSA secretion without altering tumour growth or volume. In a phase I trial, several patients with AIPC had elevated serum PSA levels while receiving TNP-470 that reversed upon discontinuation. TNP-470 inhibits capillary growth in several angiogenesis models. These observations prompted us to determine if TNP-470, or its metabolite, AGM-1883, altered PSA secretion. Intracellular protein and transcriptional levels of PSA and androgen receptor were also determined. The highest TNP-470 concentration produced a 40.6% decrease in cell number; AGM-1883 had minimal effects on cell viability. PSA secretion per cell was induced 1.1- to 1.5-fold following TNP-470 exposure. The same trend was observed for AGM-1883. PSA and AR were transcriptionally up-regulated within 30 min after exposure to TNP-470. PSA transcription was increased 1.4-fold, while androgen receptor (AR) transcription was induced 1.2-fold. The increased PSA transcriptional activity accounts for the increased PSA secretion. Increased AR transcription was also reflected at the protein level. In conclusion, TNP-470 and AGM-1883 both up-regulated PSA making clinical utilization of this surrogate marker problematic. © 1999 Cancer Research Campaig

    Induction of Noxa-Mediated Apoptosis by Modified Vaccinia Virus Ankara Depends on Viral Recognition by Cytosolic Helicases, Leading to IRF-3/IFN-β-Dependent Induction of Pro-Apoptotic Noxa

    Get PDF
    Viral infection is a stimulus for apoptosis, and in order to sustain viral replication many viruses are known to carry genes encoding apoptosis inhibitors. F1L, encoded by the orthopoxvirus modified vaccinia virus Ankara (MVA) has a Bcl-2-like structure. An MVA mutant lacking F1L (MVAΔF1L) induces apoptosis, indicating that MVA infection activates and F1L functions to inhibit the apoptotic pathway. In this study we investigated the events leading to apoptosis upon infection by MVAΔF1L. Apoptosis largely proceeded through the pro-apoptotic Bcl-2 family protein Bak with some contribution from Bax. Of the family of pro-apoptotic BH3-only proteins, only the loss of Noxa provided substantial protection, while the loss of Bim had a minor effect. In mice, MVA preferentially infected macrophages and DCs in vivo. In both cell types wt MVA induced apoptosis albeit more weakly than MVAΔF1L. The loss of Noxa had a significant protective effect in macrophages, DC and primary lymphocytes, and the combined loss of Bim and Noxa provided strong protection. Noxa protein was induced during infection, and the induction of Noxa protein and apoptosis induction required transcription factor IRF3 and type I interferon signalling. We further observed that helicases RIG-I and MDA5 and their signalling adapter MAVS contribute to Noxa induction and apoptosis in response to MVA infection. RNA isolated from MVA-infected cells induced Noxa expression and apoptosis when transfected in the absence of viral infection. We thus here describe a pathway leading from the detection of viral RNA during MVA infection by the cytosolic helicase-pathway, to the up-regulation of Noxa and apoptosis via IRF3 and type I IFN signalling

    Particle Physics Aspects of Antihydrogen Studies with ALPHA at CERN

    Get PDF
    We discuss aspects of antihydrogen studies, that relate to particle physics ideas and techniques, within the context of the ALPHA experiment at CERN's Antiproton Decelerator facility. We review the fundamental physics motivations for antihydrogen studies, and their potential physics reach. We argue that initial spectroscopy measurements, once antihydrogen is trapped, could provide competitive tests of CPT, possibly probing physics at the Planck Scale. We discuss some of the particle detection techniques used in ALPHA. Preliminary results from commissioning studies of a partial system of the ALPHA Si vertex detector are presented, the results of which highlight the power of annihilation vertex detection capability in antihydrogen studies.Comment: Invited talk at Pbar08 - Workshop on Cold Antimatter Plasmas and Application to Fundamental Physics, Okinawa, Japan, 2008. 14 pages, 8 figure

    Functional and structural studies of the vaccinia virus virulence factor N1 reveal a Bcl-2-like anti-apoptotic protein

    Get PDF
    Vaccinia virus (VACV) encodes many immunomodulatory proteins, including inhibitors of apoptosis and modulators of innate immune signalling. VACV protein N1 is an intracellular homodimer that contributes to virus virulence and was reported to inhibit nuclear factor (NF)-κB signalling. However, analysis of NF-κB signalling in cells infected with recombinant viruses with or without the N1L gene showed no difference in NF-κB-dependent gene expression. Given that N1 promotes virus virulence, other possible functions of N1 were investigated and this revealed that N1 is an inhibitor of apoptosis in cells transfected with the N1L gene and in the context of VACV infection. In support of this finding virally expressed N1 co-precipitated with endogenous pro-apoptotic Bcl-2 proteins Bid, Bad and Bax as well as with Bad and Bax expressed by transfection. In addition, the crystal structure of N1 was solved to 2.9 Å resolution (0.29 nm). Remarkably, although N1 shows no sequence similarity to cellular proteins, its three-dimensional structure closely resembles Bcl-xL and other members of the Bcl-2 protein family. The structure also reveals that N1 has a constitutively open surface groove similar to the grooves of other anti-apoptotic Bcl-2 proteins, which bind the BH3 motifs of pro-apoptotic Bcl-2 family members. Molecular modelling of BH3 peptides into the N1 surface groove, together with analysis of their physico-chemical properties, suggests a mechanism for the specificity of peptide recognition. This study illustrates the importance of the evolutionary conservation of structure, rather than sequence, in protein function and reveals a novel anti-apoptotic protein from orthopoxviruses

    Caspase-Dependent Inhibition of Mousepox Replication by gzmB

    Get PDF
    BACKGROUND: Ectromelia virus is a natural mouse pathogen, causing mousepox. The cytotoxic T (Tc) cell granule serine-protease, granzyme B, is important for its control, but the underlying mechanism is unknown. Using ex vivo virus immune Tc cells, we have previously shown that granzyme B is able to activate several independent pro-apoptotic pathways, including those mediated by Bid/Bak/Bax and caspases-3/-7, in target cells pulsed with Tc cell determinants. METHODS AND FINDINGS: Here we analysed the physiological relevance of those pro-apoptotic pathways in ectromelia infection, by incubating ectromelia-immune ex vivo Tc cells from granzyme A deficient (GzmB(+) Tc cells) or granzyme A and granzyme B deficient (GzmAxB(-/-) Tc cell) mice with ectromelia-infected target cells. We found that gzmB-induced apoptosis was totally blocked in ectromelia infected or peptide pulsed cells lacking caspases-3/-7. However ectromelia inhibited only partially apoptosis in cells deficient for Bid/Bak/Bax and not at all when both pathways were operative suggesting that the virus is able to interfere with apoptosis induced by gzmB in case not all pathways are activated. Importantly, inhibition of viral replication in vitro, as seen with wild type cells, was not affected by the lack of Bid/Bak/Bax but was significantly reduced in caspase-3/-7-deficient cells. Both caspase dependent processes were strictly dependent on gzmB, since Tc cells, lacking both gzms, neither induced apoptosis nor reduced viral titers. SIGNIFICANCE: Out findings present the first evidence on the biological importance of the independent gzmB-inducible pro-apoptotic pathways in a physiological relevant virus infection model

    Viral Control of Mitochondrial Apoptosis

    Get PDF
    Throughout the process of pathogen–host co-evolution, viruses have developed a battery of distinct strategies to overcome biochemical and immunological defenses of the host. Thus, viruses have acquired the capacity to subvert host cell apoptosis, control inflammatory responses, and evade immune reactions. Since the elimination of infected cells via programmed cell death is one of the most ancestral defense mechanisms against infection, disabling host cell apoptosis might represent an almost obligate step in the viral life cycle. Conversely, viruses may take advantage of stimulating apoptosis, either to kill uninfected cells from the immune system, or to induce the breakdown of infected cells, thereby favoring viral dissemination. Several viral polypeptides are homologs of host-derived apoptosis-regulatory proteins, such as members of the Bcl-2 family. Moreover, viral factors with no homology to host proteins specifically target key components of the apoptotic machinery. Here, we summarize the current knowledge on the viral modulation of mitochondrial apoptosis, by focusing in particular on the mechanisms by which viral proteins control the host cell death apparatus

    Increased Inducible Nitric Oxide Synthase Expression in Organs Is Associated with a Higher Severity of H5N1 Influenza Virus Infection

    Get PDF
    BACKGROUND: The mechanisms of disease severity caused by H5N1 influenza virus infection remain somewhat unclear. Studies have indicated that a high viral load and an associated hyper inflammatory immune response are influential during the onset of infection. This dysregulated inflammatory response with increased levels of free radicals, such as nitric oxide (NO), appears likely to contribute to disease severity. However, enzymes of the nitric oxide synthase (NOS) family such as the inducible form of NOS (iNOS) generate NO, which serves as a potent anti-viral molecule to combat infection in combination with acute phase proteins and cytokines. Nevertheless, excessive production of iNOS and subsequent high levels of NO during H5N1 infection may have negative effects, acting with other damaging oxidants to promote excessive inflammation or induce apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: There are dramatic differences in the severity of disease between chickens and ducks following H5N1 influenza infection. Chickens show a high level of mortality and associated pathology, whilst ducks show relatively minor symptoms. It is not clear how this varying pathogenicty comes about, although it has been suggested that an overactive inflammatory immune response to infection in the chicken, compared to the duck response, may be to blame for the disparity in observed pathology. In this study, we identify and investigate iNOS gene expression in ducks and chickens during H5N1 influenza infection. Infected chickens show a marked increase in iNOS expression in a wide range of organs. Contrastingly, infected duck tissues have lower levels of tissue related iNOS expression. CONCLUSIONS/SIGNIFICANCE: The differences in iNOS expression levels observed between chickens and ducks during H5N1 avian influenza infection may be important in the inflammatory response that contributes to the pathology. Understanding the regulation of iNOS expression and its role during H5N1 influenza infection may provide insights for the development of new therapeutic strategies in the treatment of avian influenza infection

    Highly Pathogenic H5N1 Influenza Viruses Carry Virulence Determinants beyond the Polybasic Hemagglutinin Cleavage Site

    Get PDF
    Highly pathogenic avian influenza viruses (HPAIV) originate from avirulent precursors but differ from all other influenza viruses by the presence of a polybasic cleavage site in their hemagglutinins (HA) of subtype H5 or H7. In this study, we investigated the ability of a low-pathogenic avian H5N1 strain to transform into an HPAIV. Using reverse genetics, we replaced the monobasic HA cleavage site of the low-pathogenic strain A/Teal/Germany/Wv632/2005 (H5N1) (TG05) by a polybasic motif from an HPAIV (TG05poly). To elucidate the virulence potential of all viral genes of HPAIV, we generated two reassortants carrying the HA from the HPAIV A/Swan/Germany/R65/06 (H5N1) (R65) plus the remaining genes from TG05 (TG05-HAR65) or in reversed composition the mutated TG05 HA plus the R65 genes (R65-HATG05poly). In vitro, TG05poly and both reassortants were able to replicate without the addition of trypsin, which is characteristic for HPAIV. Moreover, in contrast to avirulent TG05, the variants TG05poly, TG05-HAR65, and R65-HATG05poly are pathogenic in chicken to an increasing degree. Whereas the HA cleavage site mutant TG05poly led to temporary non-lethal disease in all animals, the reassortant TG05-HAR65 caused death in 3 of 10 animals. Furthermore, the reassortant R65-HATG05poly displayed the highest lethality as 8 of 10 chickens died, resembling “natural” HPAIV strains. Taken together, acquisition of a polybasic HA cleavage site is only one necessary step for evolution of low-pathogenic H5N1 strains into HPAIV. However, these low-pathogenic strains may already have cryptic virulence potential. Moreover, besides the polybasic cleavage site, the additional virulence determinants of H5N1 HPAIV are located within the HA itself and in other viral proteins
    corecore