6 research outputs found

    Recombining Low Homology, Functionally Rich Regions of Bacterial Subtilisins by Combinatorial Fragment Exchange

    Get PDF
    Combinatorial fragment exchange was utilised to recombine key structural and functional low homology regions of bacilli subtilisins to generate new active hybrid proteases with altered substrate profiles. Up to six different regions comprising mostly of loop residues from the commercially important subtilisin Savinase were exchanged with the structurally equivalent regions of six other subtilisins. The six additional subtilisins derive from diverse origins and included thermophilic and intracellular subtilisins as well as other academically and commercially relevant subtilisins. Savinase was largely tolerant to fragment exchange; rational replacement of all six regions with 5 of 6 donating subtilisin sequences preserved activity, albeit reduced compared to Savinase. A combinatorial approach was used to generate hybrid Savinase variants in which the sequences derived from all seven subtilisins at each region were recombined to generate new region combinations. Variants with different substrate profiles and with greater apparent activity compared to Savinase and the rational fragment exchange variants were generated with the substrate profile exhibited by variants dependent on the sequence combination at each region

    Burnout syndrome as an occupational disease in the European Union : an exploratory study.

    No full text
    The risk of psychological disorders influencing the health of workers increases in accordance with growing requirements on employees across various professions. This study aimed to compare approaches to the burnout syndrome in European countries. A questionnaire focusing on stress-related occupational diseases was distributed to national experts of 28 European Union countries. A total of 23 countries responded. In 9 countries (Denmark, Estonia, France, Hungary, Latvia, Netherlands, Portugal, Slovakia and Sweden) burnout syndrome may be acknowledged as an occupational disease. Latvia has burnout syndrome explicitly included on the List of ODs. Compensation for burnout syndrome has been awarded in Denmark, France, Latvia, Portugal and Sweden.Only in 39% of the countries a possibility to acknowledge burnout syndrome as an occupational disease exists, with most of compensated cases only occurring in recent years. New systems to collect data on suspected cases have been developed reflecting the growing recognition of the impact of the psychosocial work environment. In agreement with the EU legislation, all EU countries in the study have an action plan to prevent stress at the workplace

    Regulation of an intracellular subtilisin protease activity by a short propeptide sequence through an original combined dual mechanism

    No full text
    A distinct class of the biologically important subtilisin family of serine proteases functions exclusively within the cell and forms a major component of the bacilli degradome. However, the mode and mechanism of posttranslational regulation of intracellular protease activity are unknown. Here we describe the role played by a short N-terminal extension prosequence novel amongst the subtilisins that regulates intracellular subtilisin protease (ISP) activity through two distinct modes: active site blocking and catalytic triad rearrangement. The full-length proenzyme (proISP) is inactive until specific proteolytic processing removes the first 18 amino acids that comprise the N-terminal extension, with processing appearing to be performed by ISP itself. A synthetic peptide corresponding to the N-terminal extension behaves as a mixed noncompetitive inhibitor of active ISP with a Ki of 1 μM. The structure of the processed form has been determined at 2.6 Å resolution and compared with that of the full-length protein, in which the N-terminal extension binds back over the active site. Unique to ISP, a conserved proline introduces a backbone kink that shifts the scissile bond beyond reach of the catalytic serine and in addition the catalytic triad is disrupted. In the processed form, access to the active site is unblocked by removal of the N-terminal extension and the catalytic triad rearranges to a functional conformation. These studies provide a new molecular insight concerning the mechanisms by which subtilisins and protease activity as a whole, especially within the confines of a cell, can be regulated

    Structure/function studies on a S-adenosyl-L-methionine-dependent uroporphyrinogen III C methyltransferase (SUMT), a key regulatory enzyme of tetrapyrrole biosynthesis

    No full text
    The crystallographic structure of the Pseudomonas denitrificans S-adenosyl-L-methionine-dependent uroporphyrinogen III methyltransferase (SUMT), which is encoded by the cobA gene, has been solved by molecular replacement to 2.7A resolution. SUMT is a branchpoint enzyme that plays a key role in the biosynthesis of modified tetrapyrroles by controlling flux to compounds such as vitamin B(12) and sirohaem, and catalysing the transformation of uroporphyrinogen III into precorrin-2. The overall topology of the enzyme is similar to that of the SUMT module of sirohaem synthase (CysG) and the cobalt-precorrin-4 methyltransferase CbiF and, as with the latter structures, SUMT has the product S-adenosyl-L-homocysteine bound in the crystal. The roles of a number of residues within the SUMT structure are discussed with respect to their conservation either across the broader family of cobalamin biosynthetic methyltransferases or within the sub-group of SUMT members. The D47N, L49A, F106A, T130A, Y183A and M184A variants of SUMT were generated by mutagenesis of the cobA gene, and tested for SAM binding and enzymatic activity. Of these variants, only D47N and L49A bound the co-substrate S-adenosyl-L-methionine. Consequently, all the mutants were severely restricted in their capacity to synthesise precorrin-2, although both the D47N and L49A variants produced significant quantities of precorrin-1, the monomethylated derivative of uroporphyrinogen III. The activity of these variants is interpreted with respect to the structure of the enzyme

    The anaerobic biosynthesis of vitamin B12

    No full text
    Vitamin B12 (cobalamin) is a cobalt-containing modified tetrapyrrole that is an essential nutrient for higher animals. Its biosynthesis is restricted to certain bacteria and requires approximately 30 enzymatic steps for its complete de novo construction. Remarkably, two distinct biosynthetic pathways exist, which are termed the aerobic and anaerobic routes. The anaerobic pathway has yet to be fully characterized due to the inherent instability of its oxygen-sensitive intermediates. Bacillus megaterium, a bacterium previously used for the commercial production of cobalamin, has a complete anaerobic pathway and this organism is now being used to investigate the anaerobic B12 pathway through the application of recent advances in recombinant protein production. The present paper provides a summary of recent findings in the anaerobic pathway and future perspectives

    Splicefinder : a fast and easy screening method for active protein trans-splicing positions

    Get PDF
    Split intein enabled protein trans-splicing (PTS) is a powerful method for the ligation of two protein fragments, thereby paving the way for various protein modification or protein function control applications. PTS activity is strongly influenced by the amino acids directly flanking the splice junctions. However, to date no reliable prediction can be made whether or not a split intein is active in a particular foreign extein context. Here we describe SPLICEFINDER, a PCR-based method, allowing fast and easy screening for active split intein insertions in any target protein. Furthermore we demonstrate the applicability of SPLICEFINDER for segmental isotopic labeling as well as for the generation of multi-domain and enzymatically active proteins
    corecore