1,403 research outputs found

    Materials Design using Correlated Oxides: Optical Properties of Vanadium Dioxide

    Full text link
    Materials with strong electronic Coulomb interactions play an increasing role in modern materials applications. "Thermochromic" systems, which exhibit thermally induced changes in their optical response, provide a particularly interesting case. The optical switching associated with the metal-insulator transition of vanadium dioxide (VO2), for example, has been proposed for use in "intelligent" windows, which selectively filter radiative heat in hot weather conditions. In this work, we develop the theoretical tools for describing such a behavior. Using a novel scheme for the calculation of the optical conductivity of correlated materials, we obtain quantitative agreement with experiments for both phases of VO2. On the example of an optimized energy-saving window setup, we further demonstrate that theoretical materials design has now come into reach, even for the particularly challenging class of correlated electron systems.Comment: 4+x pages, 2 figure

    Saturating Constructions for Normed Spaces II

    Get PDF
    We prove several results of the following type: given finite dimensional normed space V possessing certain geometric property there exists another space X having the same property and such that (1) log (dim X) = O(log (dim V)) and (2) every subspace of X, whose dimension is not "too small," contains a further well-complemented subspace nearly isometric to V. This sheds new light on the structure of large subspaces or quotients of normed spaces (resp., large sections or linear images of convex bodies) and provides definitive solutions to several problems stated in the 1980s by V. Milman. The proofs are probabilistic and depend on careful analysis of images of convex sets under Gaussian linear maps.Comment: 35 p., LATEX; the paper is a follow up on math.FA/040723

    The quantum Heisenberg antiferromagnet on the Sierpinski Gasket: An exact diagonalization study

    Full text link
    We present an exact diagonalization study of the quantum Heisenberg antiferromagnet on the fractal Sierpinski gasket for spin quantum numbers s=1/2,s=1 and s=3/2. Since the fractal dimension of the Sierpinski gasket is between one and two we compare the results with corresponding data of one- and two-dimensional systems. By analyzing the ground-state energy, the low-lying spectrum, the spin-spin correlation and the low-temperature thermodynamics we find arguments, that the Heisenberg antiferromagnet on the Sierpinski gasket is probably disordered not only in the extreme quantum case s=1/2 but also for s=1 and s=3/2. Moreover, in contrast to the one-dimensional chain we do not find a distinct behavior between the half-integer and integer-spin Heisenberg models on the Sierpinski gasket. We conclude that magnetic disorder may appear due to the interplay of frustration and strong quantum fluctuations in this spin system with spatial dimension between one and two.Comment: 12 pages (LaTeX), 7 figures, 3 tables, to appear in Physica

    Investigation of quasi-periodic varaiations in hard X-rays of solar flares

    Full text link
    The aim of the present paper is to use quasi-periodic oscillations in hard X-rays (HXRs) of solar flares as a diagnostic tool for investigation of impulsive electron acceleration. We have selected a number of flares which showed quasi-periodic oscillations in hard X-rays and their loop-top sources could be easily recognized in HXR images. We have considered MHD standing waves to explain the observed HXR oscillations. We interpret these HXR oscillations as being due to oscillations of magnetic traps within cusp-like magnetic structures. This is confirmed by a good correlation between periods of the oscillations and the sizes of the loop-top sources. We argue that a model of oscillating magnetic traps is adequate to explain the observations. During the compressions of a trap particles are accelerated, but during its expansions plasma, coming from chromospheric evaporation, fills the trap, which explains the large number of electrons being accelerated during a sequence of strong impulses. The advantage of our model of oscillating magnetic traps is that it can explain both the impulses of electron acceleration and quasi-periodicity of their distribution in time.Comment: 21 pages, 11 figures, 3 tables, submitted to Solar Physic

    Constraints on the total coupling strength to bosons in iron based superconductors

    Full text link
    At present, there is still no consistent interpretation of the normal and superconducting properties of Fe-based superconductors (FeSCs). The strength of the el-el interaction and the role of correlation effects are under debate. Here, we examine several common materials and illustrate various problems and concepts that are generic for all FeSCs. Based on empirical observations and qualitative insight from density functional theory, we show that the superconducting and low-energy thermodynamic properties of the FeSCs can be described semi-quantitively within multiband Eliashberg theory. We account for an important high-energy mass renormalization phenomenologically,and in agreement with constraints provided by thermodynamic, optical, and angle-resolved photoemission data. When seen in this way, all FeSCs with Tc<T_\mathrm{c} < 40~K studied so far are found to belong to an {\it intermediate} coupling regime. This finding is in contrast to the strong coupling scenarios proposed in the early period of the FeSC history.We also discuss several related issues, including the role of band shifts as measured by the positions of van Hove singularities, and the nature of a recently suggested quantum critical point in the strongly hole-doped systems AFe2_2As2_2 (A = K, Rb, Cs). Using high-precision full relativistic GGA-band structure calculations, we arrive at a somewhat milder mass renormalization in comparison with previous studies. From the calculated mass anisotropies of all Fermi surface sheets, only the ε\varepsilon-pocket near the corner of the BZ is compatible with the experimentally observed anisotropy of the upper critical field. pointing to its dominant role in the superconductivity of these three compounds.Comment: 19 pages, 9 figure

    Probabilistic Approach to Structural Change Prediction in Evolving Social Networks

    Get PDF
    We propose a predictive model of structural changes in elementary subgraphs of social network based on Mixture of Markov Chains. The model is trained and verified on a dataset from a large corporate social network analyzed in short, one day-long time windows, and reveals distinctive patterns of evolution of connections on the level of local network topology. We argue that the network investigated in such short timescales is highly dynamic and therefore immune to classic methods of link prediction and structural analysis, and show that in the case of complex networks, the dynamic subgraph mining may lead to better prediction accuracy. The experiments were carried out on the logs from the Wroclaw University of Technology mail server
    • …
    corecore