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Abstract

We prove several results of the following type: given finite-dimensional normed space
possessing certain geometric property there exists another $pdawving the same property
and such that (1) log dilf = O(log dimV) and (2) every subspace of, whose dimension
is not “too small”, contains a further well-complemented subspace nearly isomet¥ic This
sheds new light on the structure of large subspaces or quotients of normed spaces (resp., large
sections or linear images of convex bodies) and provides definitive solutions to several problems
stated in the 1980s by Milman.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

This paper continues the study of thaturation phenomenorhat was discovered in
[ST] and of the effect it has on our understanding of the structure of high-dimensional
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normed spaces and convex bodies. In particular, we obtain here a dichotomy-type result
which offers a near definitive treatment of some aspects of the phenomenon. We sketch
first some background ideas and hint on the broader motivation explaining the interest
in the subject.

Much of geometric functional analysis revolves around the study of the family of
subspaces (or, dually, of quotients) of a given Banach space. In the finite-dimensional
case this has a clear geometric interpretation: a normed space is determined by its unit
ball, a centrally symmetric convex body, subspaces correspond to sections of that body,
and quotients to projections (or, more generally, linear images). Such considerations are
very natural from the geometric or linear-algebraic point of view, but they also have
a bearing on much more applied matters. For example, a convex set may represent
all possible states of a physical system, and its sections or images may be related to
approximation or encoding schemes, or to results of an experiment performed on the
system. It is thus vital to know to what degree the structure of the entire space (resp.,
the entire set) can be recovered from the knowledge of its subspaces or quotients (resp.,
sectiongimages). At the same time, one wants to detect some possible regularities in
the structure of subspaces which might have not existed in the whole space.

A seminal result in this direction is the 1961 Dvoretzky theorem, with the 1971
strengthening due to Milman, which says that every symmetric convex body of large
dimensionn admits central sections which are approximately ellipsoidal and whose
dimensionk is of order logn (the order that is, in general, optimal). Another major
result was the discovery of MilmaM2] from the mid 1980s thagvery ndimensional
normed space admitssabspace of a quotienthich is “nearly” Euclidean and whose
dimension is>0n, where0 € (0, 1) is arbitrary (with the exact meaning of “nearly”
depending only orf)). Moreover, a byproduct of the approach frgM2] was the fact
that everyn-dimensional normed space admits a “proportional dimensional” quotient of
boundedvolume ratig a volumetric characteristic of a body closely related to cotype
properties (we refer tfMS1,T,P2] for definitions of these and other basic notions and
results that are relevant here). This showed that one can get a very essential regularity
in a global invariant of a space by passing to a quot@na subspace of dimension,
say, approximately:/2. It was thus natural to ask whether similar statements may be
true for other related characteristics. This line of thinking was exemplified in a series
of problems posed by Milman in his 1986 ICM Berkeley lect{i43].

The paper{ST] elucidated this circle of ideas and, in particular, answered some of
the problems fronfM3]. A special but archetypal case of the main theorem f{&i|
showed the existence of andimensional spac¥ whoseevery subspace (respevery
quotient) of dimension>n/2 contains a further 1-complemented subspace isometric
to a preassigned (but a priori arbitrarigdimensional spac&/, as long ask is at
most of order,/n. In a senseY was saturatedwith copies of theV. This led to the
discovery of the following phenomenon: passing to large subspaces or quatemist
in general, erask-dimensional features of a spacekiis below certain threshold value
depending on the dimension of the initial space and the exact meaning of “large”. In
the particular case stated above, i.e., that of “proportional” subspaces or quotients, the
threshold dimension was (at least) of ordét, and “impossibility to erase” meant that
every such subspace (resp., quotient map) preserved a copy of the\given
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However, the methods presented[8T] were not sufficient for a definitive treatment
of the issue at hand. For example, we prove in the present paper that, for arg;
there are spaces of cotymge(of arbitrarily high-dimensiom, with uniform control of
constants) whose all, say/2-dimensional subspaces are podfyconvex (or, equiva-
lently, contain rather large subspaces well-isomorphic to finite-dimensiarspaces).

This is in stark contrast to the extremal caseqo& 2: as it has been known since

mid 1970s, every space of cotype 2 admits proportional subspaces which are nearly
Euclidean (which is of course incomparably stronger than bé&rmpnvex). By com-
parison, in[ST] a similar result was established only fgr> 4. This answered one of

the questions of Milman, but still left open a possibility that an intermediate hypothesis
weaker than cotype 2 (such as cotypavith 2 < ¢ <4) could force existence of nice
subspaces. Our present theorem closes this gap completely, and has the character of a
dichotomy: forg = 2 every space of cotype 2 admits proportional nearly Euclidean
subspaces, while for any > 2 there exist spaces of cotypewithout large K-convex
subspaces at all. It was important to clarify this point since hypothetical intermediate
threshold values off (namely,q = 4) appeared in related—and still not completely
explained—contexts in the asymptotic geometric analysis literaturgBtf(see also

[T, Proposition 27.5] or [P1].

Another variation of the saturation phenomenon that is being considered here ad-
dresses what has being referred to recently as “global properties”. It has been realized
in the last few years (cfMS2]) that manylocal phenomena (i.e., referring to sub-
spaces or quotients of a normed space) hglebal analogues, expressed in terms of
the entire space. For example, a “proportional” quotient of a normed space corresponds
to the Minkowski sum of several rotations of its unit ball. Dually, a “proportional” sub-
space corresponds to the intersection of several rotations. (Such results were already
implicit, e.g., in[K].) Here we prove a sample theorem in this direction concerning
the Minkowski sum of two rotations of a unit ball, which answers a query directed to
us by Milman.

We use the probabilistic method, and employ the “blueprint” for constructing random
spaces that was developed by Gluskin[@] (the reader is also referred {®/T]
for a survey of other results and methods in this direction). In their most general
outline, our arguments parallel those[8fT]. However, there are substantial differences,
and the present considerations are much more subtle than thd&TpfMoreover,
we believe that several ingredients (such as a usage of Le&Pike statement to
enable decoupling of otherwise dependent events, or LeBBawhile playing mostly
technical role in this paper, are sufficiently fundamental to be of independent interest.

The organization of the paper is as follows. In the next section, we describe our
main results and their immediate consequences. We also explain there the needed
conventions employed by experts in the field, but not necessarily familiar to the more
general mathematical reader. (Otherwise, we use the standard notation of convexity and
geometric functional analysis as can be found, e.g.[M&1,P2] or [T].) Section3
contains the proof of Theorerd.1, relevant to the dichotomy mentioned above and
to Problems 1-3 fronjM3]. Section4 deals with the global variant of the saturation
phenomenon.
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2. Description of results

The first result we describe is subspacesaturation theorem. The approach[8fT]
makes it easy to implement a saturation property for subspaces. Indeed, the dual space
X* of the space constructed [$T], Theorem 2.1 has the property that, under some
assumptions om, k and n := dim X*, every mdimensionalsubspaceof X* contains
a (1-complemented) subspace isometricvtgwhereV is a preassigne#t-dimensional
space). In this paper, we show that the construction can be performed while preserving
geometric features of the spa&é (specifically, cotype properties), a trait which is
crucial to applications.

Theorem 2.1. Let ¢ € (2,00] and lete > 0. Then there existt = o, € (0,1) and
¢ = ¢4, > 0 such that whenever positive integers n angl verify cIn*<mo<n and
V is any normed space with

dim V <cmg/n”,

then there exists an-dimensional normed space Y whose cotype g constant is bounded
by a function of g and the cotype g constant of V and such thatany mo<m <n,
everym-dimensional subspacg of Y contains &1+¢)-complemented subspackt-e)-
isomorphic to V

Let us start with several remarks concerning the hypothesés:endim V and mg
included in the statement above. If, sayg ~ n/2, thenk of order “almost” n1—*
is allowed. Nontrivial (i.e., large) values d&f are obtained whenevenrg > n%; we
included the lower bound omg in the statement to indicate for which values of the
parameters the assertion of the theorem is meaningful.

We can now comment on the relevance of Theorzm to problems from[M3].
Roughly speaking, Problems 2 and 3 asked whether every space of nontrivial cotype
g < oo contains a proportional subspace of type 2, or even kusbnvex. This is
well known to be true ifg = 2 due to presence of nearly Euclidean subspaces. (For a
reader not familiar with the typeotype theory it will be “almost” sufficient to know
that a nontrivial (i.e., finite) cotype property of a space is equivalent to the absence of
large subspaces well isomorphic 4g,-spaces; similarly, nontrivial type properties and
K-convexity are related to the absencetgfsubspaces.) Accordingly, by choosing, for
example,V = (’i in the theorem, we obtain—in view of the remarks in the preceding
paragraph on the allowed values kfand m—a space whose all “large” subspaces
contain isometricallylf’i and which consequently provides a counterexample to the
problems forany ¢ > 2. More precisely, ifng is “proportional” ton andV = e’; is of
the maximal dimension that is allowed, then the type 2 constant of any corresponding
subspace? of Y from the theorem is at least of ordefl~*/2 (and analogously for
any nontrivial typep > 1). The K-convexity constant of any such is at least of
order./log n (up to a constant depending g Problems 2 and 3 frorfM3] are thus
answered in the negative in a very strong sense. Problem 1 [it8h corresponds to
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g = oo in Theorem2.1 (i.e., no cotype assumptions) and has already been satisfactorily
treated in[ST]; however, the present paper offers a unified discussion of all the issues
involved (see also related comments later in this section).

We also remark that choosing = Z’[‘, (for some 1< p < 2) in Theorem2.1 leads
to a space¥ whose typep and cotypeq constants are bounded by numerical constants
and such that, for everyn-dimensional subspacg of Y and everyp < p1 < 2, the
type p1 constant ofY is at leastk™?=1/P1_ If mq is “proportional” ton, the type p1
constant ofY is at least of ordem~®@/P=1/r1) in particular it tends to+oo as
n — oo. On the other hand, the spacEsandY are then, by construction, uniformly
(in n) K-convex.

Theorem2.1 will be an immediate consequence of the more precise and more tech-
nical Proposition3.1 stated in the next section. That statement makes the dependence
of the parameters, « on ¢ > 0 andg € (2, co) more explicit. This will allow us, by
letting ¢ — oo, to retrieve the casg = oo and then, by passing to dual spaces, to
reconstruct (up to a logarithmic factor) the main theorem fi@]: if n, mg and k
satisfy v/n Tog n <mo<n and k <mg/+/n log n, then for every k-dimensional normed
space W there exists an n-dimensional normed space X such that every qiotént
X with dim X >mg contains al-complemented subspace isometric to W

We wish now to offer a few comments on the construction that is behind
Theorem?2.1, and which is implicit in Propositior8.1 To this end, we recall some
notation and sketch certain ideas frof$T], which also underlie the present
argument.

If Wis a normed space and<lp < oo, by Zg(W) we denote the/,-sum of N
copies ofW, that is, the space dN-tuples (x1,...,xy) with x; € W for 1<i<N,
with the norm||(xy, ..., xp)ll = (3 ||xi||P)1/p. It is a fundamental and well-known
fact that the spaceég (W) inherit type and cotype properties of the spatiein the
appropriate ranges gf (cf. e.g.,[T, Section 4].

The saturating construction frof8T] obtainedX* as a (random) subspace & (V),
for appropriate value ofN. This is not the right course of action in the context of
Theorem2.1 since such a subspace will typically contain rather large subspaces well
isomorphic to€s,, hence failing to possess any nontrivial cotype property. However,
substitutingq for co works: the spacezflv (V) and all its subspaces will be of cotype
q if V is. The approach ofST] was to concentrate on the case @ (V), and then
to use the available “margin of error” to transfer the resultg)tsufficiently close to
oo. By contrast, to handle the entire range<2; < co we need to workdirectly in
the ¢, setting, which—as is well known to analysts—often requires much more subtle
considerations.

To state the next theorem, it will be helpful to subscribe to the following “philosophy”
and notational conventions. Since a normed spéace completely described by its unit
ball K = Bx or its norm | - ||x, we shall tend to identify these three objects. In
particular, we will write || - | for the Minkowski functional defined by a centrally
symmetric convex bod¥X c R"” and denote the resulting normed space(BY, |- | k)
or just (R", K). Two normed spaces are isometric iff the corresponding convex bodies
are affinely equivalent.
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As suggested in the Introduction, it is of interest to consider “global” analogues
of Theorem?2.1-like statements. The following is a sample result that corresponds to
the “local” Theorem 2.1 of [ST], and that was already announced in that

paper.

Theorem 2.2. There exists a constanrt > 0 such that for any positive integers, k
satisfyingk <cn'/* and for every kdimensional normed space,\Where exists an N
dimensional normed spacE = (R", K) such that for any u € O(n), the normed
space(R", K + u(K)) contains a3-complemented subspagasomorphic to W

In general, the interplay between the global and local results is not fully understood.
While it is an experimental fact that a parallel between the two settings exists, there
is no formal conceptual framework which explains it. It is thus important to provide
more examples in hope of clarifying the connection. It is also an experimental fact that
the local results and their global analogues sometimes vary in difficulty. In the present
context, the proof of Theorer.2 is substantially more involved than that of its local
counterpart, Theorem 2.1 frofsT].

We conclude this section with several comments about notation. As mentioned earlier,
our terminology is standard in the field and all unexplained concepts and notation can
be found, e.g., ifMS1,P2]or [T]. The standard Euclidean norm & will be always
denoted by| - |. (Attention: the same notation may mean elsewhere cardinality of a
set and, of course, the absolute value of a scalar.) We will wBtefor the unit ball
in £5 and, similarly but less frequentlyz for the unit ball in£’), 1< p<oo.

For a setS c R", by conv(S) we denote the convex hull & If 1<p < oo, we
denote by cony(S) the p-convex hull of § that is, the set of vectors of the form
> itix;, wheret; > 0 andx; € § for all i, and ), tl.” = 1. (In particular, forp = 1,
conv, (S) = conv(s).)

The arguments below will use various subsetdR8fobtained as convex hulls qr
convex hulls, for 1< p < oo, of some more elementary sets, or linear images of those;
indeed for Theoren2.1 we have to consider the case pf> 1, while in Theorem2.2
the case ofp = 1 is sufficient. In order to emphasize the parallel roles which these
sets (and other objects such as subspaces) play in the proofs throughout this paper and
its predecessofST], we try to keep a unified notation for them, and to distinguish
them by adding a subscript when the set depends gn This will also make possible
references tgST].

3. Saturating spaces of cotypa> 2

Theorem2.1 will be an immediate consequence of the following technical proposi-
tion.

Proposition 3.1. Let 2 < g < oo and seta := (¢ — 2)/(2q + 2) (€ (O, %)). Let n and
mo be positive integers with/g n*~*(log n)A=29/3<mg<n. Let V be any normed
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space with

. c1mo
dim V< ¢1/2 n1=%(log n)1-20/3

(wherec1 > 0 is an appropriate universal constgniThen there exists an-dimensional
normed space Y whose cotype g constant is bounded by a function of q and the cotype
q constant of V and such thdbr any mo<m <n, every mdimensional subspacg of

Y contains a2'/7-complemented subspa@/?-isomorphic to V Moreover for every

e > 0, we may replace the quantiB*/¢ by 1+, at the cost of allowing:; to depend

on e.

Proof. Fix 2 < ¢ < oo and letp = ¢g/(¢ — 1) be the conjugate exponent. Let
1<k<m<n<kN be positive integers. More restrictions will be added on these pa-
rameters as we proceed, and in particular we shall spétifgepending also on) at
the end of the proof. Notice that choosing the constansmall makes the assertion
vacuously satisfied for small values mf, and so we may and shall assume that n
andN are large.

Let V be ak-dimensional normed space. Identiywith R¥ in such a way that the
Euclidean ballB5 and the unit ballBy of V satisfy B5 ¢ By c vk BS (for example,
B’z‘ may be the ellipsoid of maximal volume contained &y). As indicated in the
preceding section, we shall construct the spdcas a (random) subspace oj’(V),
the £,-sum of N copies ofV. We will actually work in the dual setting of random
quotients ofZ, := Elf;’(W), whereW := V*; as frequent in this type of constructions,

the geometry of that setting is more transparent. The above identificatigrwith R¥
induces the identification oV with R¥, and thus allows to identifyz,, with RVX.

Let G = G(w) be an x Nk random matrix (defined on some underlying probability
space(£2, P)) with independentV (0, 1/n)-distributed Gaussian entries. Considgras
a linear operatoG : RM — R" and set

K, = BXI,(w) = G(w)(sz) Cc R™. 8.1

The random normed spac€, = X,(w) can be thought of as a random (Gaussian)
quotient of Z,,, with G(w) the corresponding quotient map akg the unit ball ofX .
(The normalization ofG is not important; here we choose it so that, withV in the
ranges that matter, the radius of the Euclidean ball circumscribeff ,pibe typically
comparable to 1.)

We reiterate that the dual spack¥§ = X ,(w)* are isometric to subspaces &f, =
E;V(V) and so their cotypg constants are uniformly bounded (dependinggosind the
cotypeq constant ofV). We shall show that, for appropriate choices of the parameters,
the space’ = X, (w)* satisfies, with probability close to 1, the (remaining) assertion of
Theorem2.1 involving the subspaces well isomorphic\o This will follow if we show
that, outside of a small exceptional set, every quot@p(a}) of X,(w) of dimension
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m>mgo contains a ¥7-complemented subspacé/2isomorphic tow, for values ofk
described in Theorerf.1 (and analogously for 4 ¢ in place of 2/4). To be absolutely
precise, we shall show that the identity Whwell factors throughX ,(w), a property
which dualizes without any loss of the constant involved. Thus, we have a very similar
problem to the one considered [8T], however the present context requires several
subtle technical modifications of the argument applied there.
Similarly as in[ST], we will follow the scheme first employed {&]: Step | showing
that the assertion of the theorem is satisfied fdixad quotient map with probability
close to 1; Step Il showing that the assertion is “essentially stable” under small per-
turbations of the quotient map; and Step Il which involves a discretization argument.
We start by introducing some notation that will be used throughout the paper. Denote
by Fi,..., Fy the k-dimensional coordinate subspaces®¥* corresponding to the
consecutive copies oV in Z,. In particular, from the definition of thé,-sum we
have

Bz, =conv,(F;NBz,:jefl,....,N}.

For j = 1,...,N, we define subsets oR" as follows: E; := G(F;), K; =
G(Fj ﬂsz) and

K}’p = G(span{F; : i # j}N Bz,). = conv,(K; : i # j). 3.2)

We point out certain ambiguity in the notatiok’,, p € (1,2), is the unit ball of
Xp, while K, j € {1,..., N} stands for the section ok, corresponding tcE;. This
should not lead to confusion since, first, the sectidosnotdepend orp and, second,
p remains fixed throughout the argument. (We keep the subsgripiostly to facilitate
references between various parts of this paper anfb19.) Similar caveats apply to
the families of setsD., K. and D. which are defined in what follows.

In addition to K, and theK;'s, we shall need subsets constructed in an analogous
way from the Euclidean balls. First, fogr=1,..., N, setD; := G(F; N BQ’"). Then
let

Dy =G (conv,(F; N BY* 2 j e (1. ND)) =cony,(D; 1 j € (L., ND. (3:3)
Next, forj =1,..., N, let
o Nk .o o) .
D,,:=G (conv,,(F,- NBYk:i ])) = conv,(D; : i # Jj). (3.4)

Finally, for a subsetl c {1,..., N}, we let

Dy.p =G (conv(Fi 0 B i e 1)) = convy(D; : i € ). (3.5)
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Note that since\%B’z‘ C Bw C B, it follows thatJiﬁDj C K; C D;. Consequently,
analogous inclusions hold for all the correspondifg and D-type sets as they are
p-convex hulls of the appropriat&;'s and D;’s.

Stepl: Analysis of a single quotient mafince a quotient space is determined up
to an isometry by the kernel of a quotient map, it is enough to consider quotient
maps which areorthogonal projections. Let, for the time beingQ : R" — R™
be the canonical projection on the finst coordinates. In view of symmetries of our
probabilistic model, all relevant features of this special case will transfer to an arbitrary
rank m orthogonal projection.

Let G = QG, i.e., G is them x Nk Gaussian matrix obtained by restrictig to
the firstm rows. Let K,, =0(Kp) = G(BZ ) and denote the spad®™, K,) by X;

the spaceX,, is the quotient ofX, induced by the quotient maQ. We shall use the
notation of £, K, K , for the subsets o™ defined in the same way &;, K,
K’ , above, but using the matrig in place of G. Analogous convention is used to
deflne theD-type setsD,, D; and D’

For any subspacél c R, we WI|| denote by Py the orthogonal projection onto

H. We shall show that outside of an exceptional set of small measure there exists
je{l, ..., N} such thatPEj (K}’p) C K;. Note that, for any givem, we always have

K, = conv,(K;, k{,p) and K; C E;. It follows that, forj as above,
Py, (K,) = conv, (K}, PE~1_(1€;., ) C2YK;. (3.6)

Note thatK ; is an affine image of the balf;nB_,, which is the ballBy on coordinates
from F;. On the other handE; considered as a subspace X5§ (thus endowed with
the ball E; N K ) satisfies, by 3.6), K; ¢ £; N K, C 2Y4K;, which makes it ¥-
|somorph|c toBw. Using @.6) again we also get the121 -complementation. (Similarly,
P (K ) C sK will imply (1 + ¢)-isomorphism and1 + ¢)-complementation.)

Returnlng to inclusions between thé and D-type sets, they also hold for thie -
and D-type sets, so that, for examplel—D C K C D Consequently, in order for

the |nclu5|onPEj(K;’p) - K to hold |t is enough to have

L5, (3.7)

Pg (DJ p) C ﬁ

The rest of the proof of Step | is to show that, with an appropriate choice of the
parameters, this seemingly rough condition is satisfied for spmél, ..., N}, outside
of a small exceptional set.

Let us now pass to the definition of the exceptional set. We start by introducing, for
j €f{l,..., N}, the “good” setgevents. Fix a parameter @ k<1 to be determined
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later, and let

=loe@: Py D), crByl, (3.8)
1 o 3
/O:{Z\/T(B?QEJ')CD]'CZ\/T(B?QEJ')}. (3.9

Now if k, k, m and n satisfy

1 1
Kgﬁ : 2\/7, (3.10)

then, forw € @/ N @j o» inclusion @.7) holds. Thus, outside of the exceptional set

=\ | @ne)= ((Q\@/)U(Q\@jo)) (3.11)
1<j<N 1<j<N
there existsj € {1,..., N} such that 8.7) holds, and this implies, by an earlier
argument, that there existse {1,..., N} such thatE; considered as a subspace of

X, is 2Y/4-complemented and2/-isomorphic toW.

A note about notation is in place here. While for the subsets of Euclidean spaces
such ask,, D;, etc. it was possible to keep a unified convention throughout various
parts of this paper and its predecesg®r], the structures of the corresponding families
of exceptional events are not fully parallel and so, to avoid misunderstandings, we use
different letters in distinct contexts® in this section vs.E in Section 4 andQ in
[ST]. However, we attempted to keep the same pattern of indices for analogous events
whenever possible.

It remains to show that the measure of the exceptionabeis appropriately small;
this will be the most technical part of the argument. The first problem we face is that
the events entering the definition 6i° are not independent gsvaries. We overcome
this difficulty by a decoupling trick which allows to achieve conditional independence
on a large subset of these events.

Lemma 3.2. Let A = (4;;) be an N x N matrix such that/;; >0 for all i, j and
Ajj =0 for all j. Then there existg C {1,..., N} with |J|>N/3 such that for every
j € J we have
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Proof. This lemma is an immediate consequence of the result of K. Ball on suppression
of matrices presented and provedBT]. By Theorem 1.3 ifBT], there exists a subset

J C{L...,N} with |J|>N/3 such thaty",_; ;<33 N, 4; for j € J, which is

just a restatement of the condition in the assertion of the lemma. Note that Theorem
1.3 of [BT] dealt only with sub-stochastic matrices, here we use its homogeneous
reformulation. [

We now return to our main argument. Lete ©°; we start by relating to thisy an
N x N matrix A verifying the hypotheses of Lemn&2 Given j € {1,..., N}, we
see from 8.1 that eitherw € 2\ 0, or w € 2\ 0’} ;. We will use this information

to define thejth column of A. If w € Q\ @/j, then looking at the definitions of the
event @/j and the setﬁg’p (respectively, 8.8) and (3.4)), we deduce that there exist
xij € F; 0 BYK, foralli s j, with 3, |x; jIP = 1 andz; € E; N B such that

<G(in,./), Z,,-> > K.

i#]

By changingx; ; to —x; ; if necessary, we may assume tr‘(ﬁX[.j,Zj>>o for all
i # j. We then set, for this particulgy /;; = (Gxi,j,zj) fori # jand/i;; = 0. If
o ¢ Q\@/j, then necessarily € Q\@/j,o and we just sef;; =0 foralli e {1,..., N}.
There is no deep reason for this choice; the columns of the second kind (i.e., the null
columns) are neededt this stage only for book-keeping purposes. The reader is
advised to concentrate on the columns of the first kind which are at the focus of the
present decoupling argument.

The matrix A having been defined, we can apply to it Lem®2 Let J be the
resulting subset ofl, ..., N}. We may assume that’| = [N/3] =: £. The assertion
of the lemma means that for evelye J such thatw € Q\ @’j we have

<G(ZX;’J),Z]‘>>K/3

i¢J

and so, reversing the reasoning that gaveithgs we obtain
(ONS Q\ @/j,-]c’

where

0, e i={we: Py (D) c (e/3)By]. (3.12)

We recall that for a subset C {1,..., N}, D,J, is defined analogously to (3.5), but
using the matrixG instead ofG, and that/¢ = {1,..., N}\J. Also note that definition
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(3.12 has a form similar to .8): indeed,[);.,p = Dy, wherel = {1,...,N}\ {j};
additionally, k. gets replaced by/3.

Let 7 be the family of all subsety c {1,..., N} with |J| = [N/3] = ¢£. The
above argument immediately implies that

N @\e)c e\ o).

1I<j<N JeJ jel

If we @° \ QKKN(Q\ @/j), then some of the columns are “of the second kind”
and, consequently, the se@’jyo enter into the picture. Accordingly, when considering

a generalw € ©°, we need to replac®’; and @', ;. by their intersections witt®’, ,
in the inclusion above. We then obtain

= [ (2\@©@nep)c e, (3.13)

I<j<N JeJ

where forJ € J we set

jed

Our next objective will be to estimate(© ;) for a fixedJ. To further streamline the
notation, we shall restrict our attention (as we may, by symmetryy te {1, ..., ¢}
and denote, forj =1,...,¢,

(c/‘j’p = Q \ (@/]JL m @/j’o)

Definition (3.14) then becomes

Q= ()&,
jeJ

We are now in the position to make the key observation of this part of the argument:
for a fixed J € J, the events; ,, for j € J, are conditionally independent with
respect toD e ,: once Dy« , is fixed, each; , depends only on the restrictiod s,

(in fact, just onG|r,). Actually, the ensembl¢G r, : j € J}U{Dye p} is independent
since its distinct elements depend on disjoint sets of column§,oénd the columns
themselves are independent. This and the symmetry in the indiee$ implies that

P@©y | Dye)=P((\Ej.p | Dscp))
jelJ
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~ ~ Ja
=[]PEp | Dsep) = (P(gl,,) | D,c,,,)) . (3.15)
jelJ

To estimateP (£, | [)Jc,,,) first note that, by the definition aofy ,, this probability
is less than or equal tB(Q\ O ;. | ch,p)+|P(Q\@’lyo | ch,p). Next, since@1 , is
independent ofD;. ,, the second term equals just-1P (01 o). Further, the se®

is the same as ifST] (where it was denoted bgé’l,o, see formula (3.7) in that paper),
and so

P(Q\ Oy g | Dy p) <e /3% 4 ¢79m/32 (3.16)

(see (38.16) in[ST], or use directly Lemma 3.3 froniST] or Theorem 2.13 from
[DS], both of which describe the behavior of singular numbers of rectangular Gaussian
matrices).

For the term involving? \ @ ,. the probability estimates are much more delicate
and will require two auxiliary lemmas. Before we state them, we recall the by now
classical concept of functionalf*(-), defined for a se§ c R? by

M*(S) = [S sup(x, y) dx, (3.17)

d—1 yes
where the integration is performed with respect to the normalized Lebesgue measure
on §9-1 (this is 3 of what geometers call the mean width §fif Sis the unit ball
for some norm,M*(S) is the average of thdual norm overS¢—1). We then have
Lemma 3.3. Let d, s be integers withl <d <s and let A = (g;;) be ad x s random
matrix with independend (0, ¢2)-distributed Gaussian entries. Furthdet a > 0 and

let S ¢ R* be a symmetric convex body satisfyiigc aB3. Then the random body
AS c R? verifies

E(M*(AS)) = ¢;aM*(S),
wherec, = v2I'(551)/T'(5) < /5. Moreover for any t > 0,

P (M*(AS) > cng*(S) + l) <e—dt2/2a2a2.

Proof. The first assertion is quite standard. We have,

E(M*(AS)) = [E/ sup{Ax, y)dy = / ) Esup(x, A*y)dy.
5=

§d-1 xeS§ xes
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Since, for anyy € R?, A*y is distributed ass|y| times the standard Gaussian vector
in R, the integrandE sup, g (x, A*y) does not depend om € $9-1 and is equal to
the appropriate (independent 8f multiple of the spherical mean. The value of the
may be obtained, e.g., by calculating the Gaussian averagé fo5° 1.

For the second assertion, we show first that the funcfien f(T) := M*(TS) is
a/~/d-Lipschitz with respect to the Hilbert-Schmidt noim||ys. Indeed, directly from
definition @3.17) we have

f(T1) — f(Tz)=/ sup(Tix, y) dy —/ sup(Tzx, y) dy
d-1 xe§ §d-1 xeS§

< / SUp((T1 — T)x, y) dy
Sd—l

xeS

</ a|(T1 — T2)*y) dy
Sdfl

1/2
<a (/ |(T1 — Tz)*ylzdy)
gd—-1

=(a/Vd)|(TL — T2)*|lus = (a/Vd)| T1 — T2||ns.

The Gaussian isoperimetric inequality (see €lg.,(2.35)] or [LT, § 1.1]) implies now
that

P(M*(AS) > E(M*(AS)) +1) <127,

which shows that the second assertion of the lemma follows from the first ohe.

The second lemma describes the behavior of the diameter of a randomdrank
projection (or the image under a Gaussian map) of a subsiBt.ofet d, s be integers
with 1<d <s and letG, , be the Grassmann manifold dfdimensional subspaces of
R* endowed with the normalized Haar measure.

Lemma 3.4. Leta > 0 and letS C R® verify S C aB3. Then for any ¢ > 0, the set
[H € Gsq: Pu(S) C (a/d]s + M*(S) + 1) BS} has measure> 1—exp(—2s /2a+1).

Similarly, replacing Py by a d x s Gaussian matrix A with independen (0, 1/s)

entries we obtain a lower bound on probability of the forin- exp(—2s/2a?).

The phenomenon discussed in the lemma is quite well known, at least if we do
not care about the specific values of numerical constants (which are not essential for
our argument) and precise estimates on probabilities. It is sometimes refereed to as
the “standard shrinking” of the diameter of a set, and it is implicit, for example, in
probabilistic proofs of the Dvoretzky theorem, 4&l,MS1]. A more explicit statement
can be found iMfM4], and the present version was proved[8T].
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We now return to the main line of our argument. Observe first that fer A <2
one has

M (convp(Fj NBYk: 1< gN)) — M*(eN (e)) < C,NYI~12, (3.18)

whereq = p/(p — 1) and 1<C,<C,/q, whereC > 0 is an absolute constant. This
is likely known, and certainly follows by standard calculations; e.g., by passing to
the average of théf}’(ﬁ’é)-norm (dual to theeg(z’é)-norm; cf. the comments following
(3.17), expressing it in terms of the Gaussian average and then majorizing the latter
via the gth moment, which in turn may be explicitly computed.

Estimate 8.18 has two consequences for the g&f (defined in 8.3)). Firstly, the
Gaussian part of Lemma.4 implies that, with our normalization o6, the diameter
of D, is typically comparable to 1. More precisely, consider the exceptional set

6':={w:D, ¢ 2By} (3.19)

Then, as long asf*(¢5 (¢5)) <(n/(4Nk))*/2, we can apply Lemma.4 to the n x
Nk matrix A = (n/(Nk)Y2G andt = 3(n/(Nk))Y2 to obtain P(@%) < exp(—n/8)
(note thata = 1 in this case). On the other hand, .18, the needed estimate on
M* (el (£)) is satisfied whenever

n>4C5N?/k, (3.20)

which will be ensured by our final choice &f and the conditions that will be imposed
on the dimensions involved (cf. the paragraph followii3g26)).

Secondly, by Lemma.3, we haveE (M*(D,)) < C,/k/n N¥4. (Recall thatG is
ann x Nk Gaussian matrix withs®> = 1/n.) Thus, by the second part of the lemma,
our second exceptional set

@' = {w: M*(D,) > 2C,/k/n N¥4) (3.21)

satisfiesP(@") < exp(—C2knN?/ /2) < exp(—n/2) (remember thaC,>1).
Now recall thatQ : R" — R™ is the canonical projection on the finst coordinates.
Since D, = QD,, it follows that for » ¢ @ we have

Dyc, C D, C 2BY. (3.22)

Further, it is a general fact (shown by passing to Gaussian averages) that, for any
Sc R, ¢,,M*(QS)<c,M*(S), werec,, andc, are constants from Lemma.3, and
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en/em < (2//T)J/i]m. Thus, foro ¢ @' we have

g - 2 [n k 4 [k
M*(Dﬂ-,p)<M*(D,,)<ﬁ /; : 2Cp\/;N1/‘1 = C”ﬁ ;Nl/‘f. (3.23)

We now return to our current main task, which is to analyze thé&e@i,c. Since
we are working with conditional probabilities, we need to introduce another exceptional
set which isDj. ,-measurable

0 = {a) : Dye.p & 2B of M*(Dye.p) > Cp(4//m)v/k/m NW}. (3.24)

It follows directly from (.22 and .23 that ® c ©'U &', we emphasize tha®’
depends in fact od, but J is fixed at this stage of the argument. Moreover, the sets

@' corresponding to differend’s are subsets of a small common super@&tu @l,
which is additionally independent @).
The definition of the setﬁ)’l’,c (cf. (3.12) involves the diameter of a random rakk

projection of[)Jc,p (note that, by the rotational invariance of the Gaussian measgure,
is distributed uniformly inG,, x, and is independent of),c,p). Moreover, ifw ¢ @',

we control the diameter and/* of the setS = [)Jc,,,, and so we are exactly in a
position to apply Lemma.4. Specifically, we use = k/6, a = 2 and assume that

C,(4/m)k/m NY1<ic/12 (3.25)
p
(which impliesa/k/m = 2/k/m <x/12) to obtain
P (Q \ 0 ,413,1,1,) Lo om/ @641 (3.26)
For the record, we note thaB.5 implies
4CEN?/ 1k <A(c/12°m <m<n

and thus condition3.20 that appeared in connection with the measure estimate for
O is automatically satisfied.

Substituting 8.26 combined with estimate3(16 for the measure of2 \ @’1’0 into
(3.195 we deduce that, outside @',

PO, | chyp)g(e—KZm/(Sﬁz)-i-l +e—m/32+e—9m/32>€

<2 e)zz eszmé/(8‘62)'
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Averaging overQ\ @ (and using®’ c ®'uU (:)1) yields
P(0,\(6MU8Y) <P (0,\0) <P (0, ]2\ 06) <(20)fe /G,

Since|7| = () andJ,.; €, > @° (cf. (3.13), it follows that

P (@0 \ (O U @1)) <P (U 0, \ (60U @1)) < (;V ) (2e)te™"mt/BE) (3 27)
JeJ

Consequently,
PO%)<POY +P@) +P(6°\ (0'U6))
w8, 2 (N ¢ —K2mt/(862)
<e +e + P (2e)e . (3.28)

This ends Step | of the proof. To summarize: we have shown that the exceptional set
60 is of exponentially small measure provide8ld5 holds, and that if, additionally,
(3.10 is satisfied, then, fot ¢ ©°, the quotient spacép (obtained fromX ,(w) via

the quotient mapQ) contains a well-complemented subspace well isomorphigVio

To be precise, to arrive at such a conclusion requires optimizing estird&8 Ever
allowable choices of the parametels «; however, we skip it for the moment since

an even more subtle optimization will be performed in Steps Il and III.

Steps Il and lll are very similar as if8T, Proposition 3.1]so we shall outline the
main points only, referring the interested readef3d] for details.

Stepll: The perturbation argument.Let Q be anarbitrary rank m orthogonal
projection onR". Denote by ®¢ the set given by formally the same formulae as
in (3.11) by the Gaussian operatas = QG for this particular Q. By rotational
invariance, all the properties we derived #F hold also for@<¢. Throughout Step II,
all references to objects defined in Step | will implicitly assume that we are dealing
with this particularQ.

Consider the exceptional sét! defined in 8.19, and observe that if&» ¢ ©1, then

D/

ip C Dy C 2B} (3.29)

for everyj =1,..., N. This is an analogue of (3.26) ¢6T] and the basis for all the
estimates that follow.

Let w ¢ @1 U ®C and letQ’ be any rankm orthogonal projection such thgtQ —
Q' <9, where|| - | is the operator norm with respect to the Euclidean n¢rmand
0 > 0 will be specified later. Then, for sonje conditions just slightly weaker than
those in 8.8) and @.9 hold with Q replaced byQ’. Namely, there exists 4 j <N
such that, firstly, ifég%Jm_m then Q' satisfies inclusions analogous t8.9) with
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constants; and 2 replaced by and 3, respectively (cf. (3.28) ofST]); and, secondly,
if 01 :=40/n/m<x/4 then Q' satisfies inclusions analogous t8.8) with x replaced
by 2x. (The former statement is exactly the same afSifi|, and the proof of the latter
uses the above inclusior3.@9 instead of (2.26) ofST].)

Finally, setd := 1/(8\/n) (as in [ST]); then the conditiond< §+/m/n is trivially
satisfied, while the condition1 <x/4 follows from 3.25. So we can now apply the
previous arguments and conclude Step llwifz @ U ©2, |0 — 0’| <J and

11
25 /%, (3.30)

then the quotient ofX, corresponding taQ’ contains a Y4-complemented subspace
2/4-isomorphic toW, namely Q'E;. We note that .30 is just slightly stronger than
(3.10, and as easy to satisfy.

Steplll: The discretization: a&-net argument. Let Q be ad-net in the set of rank
m orthogonal projections of®" endowed with the distance given by the operator norm.
Recall that such a net can be taken with cardingl@y < (C»/5)""~™ whereCy is
a universal constant (sg&T], or directly [S2]). For our choice ofé = 1/(8./n), this
does not exceed™ 1°97 at least for sufficiently large. As in (3.27) and .29, this
implies the measure estimate for our final exceptional set

P(6tu QLEJQ 0%)<p(6'ub'y QLEJQ(@Q \(©'uoh)) (3.31)

gefn/B_i_efn/Z 4 M logn <N> (Ze)ieficzmli/?;Z.
L

The first two terms are negligible. Recall that= [N /3] >N /3, and so the last term
in (3.31) is less than or equal te"" 109 n—K*mN/128
In conclusion, ifk, k, m, n and N satisfy

CVq /) k/m NY9<1c/12, 256mn log n<w’mN, (3:32)

where C > 0 is the absolute constant related @@ (see 8.25 and @.18), then the
setQ\ (OtU UQEQ ©9) has positive measure (in fact, very close to 1 for lanye
If, additionally, 3.30 is satisfied, then anyw from this set induces an-dimensional
space X, whoseall m-dimensional quotients contain a/2-isomorphic and ¥4-

complemented copy oW (and similarly with 1+ ¢ in place of 2/¢ if (3.30 holds
with an additionale factor on the right-hand side). Then the assertion of Thed2eim
holds for that particular value ah.
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It remains to ensure that condition3.32 and @3.30 are consistent and to discuss
the resulting restrictions on the dimensions. It is most convenient bo:let% m/(nk)
so that 8.30 holds. Then the conditions irB32 lead to

. N
k<c min{ ———, " , (3.33)
JgnNY4" n? log n

wherec’ € (0,1) is a universal constant. Optimizing ovhrleads to

K< cim
= g2 n(+a)/+29) (logn)l/AH+a)

which, for m = mo, is just a rephrasing of the hypothesis on diim= dim W from
Theorem?2.1, and holds in the entire rangeo<m <n if it holds for mq. It follows

that, under our hypothesis, the above construction can be implemented fomeash
ifying mo <m <n. Moreover, since the estimates on the probabilities of the exceptional
sets corresponding to different values rafare exponential in—n (as shown above),

the sum of the probabilities involved is small. Consequently, the construction can be
implementedsimultaneouslyfor all suchm with the resulting space satisfying the full
assertion of Theorer@d.1 with probability close to 1.

Finally, we point out that, as it was already alluded to earlier at some crucial points
of the argument, the % ¢-version of the statement will follow once our parameters
satisfy 3.32 and the condition analogous t8.80, with an extras on the right-hand
side. With the choice ok := (¢/8)/m/(nk), this leads to a version 0B(33, which—
after optimizing overN—gives the same bound fdr as above, but with the constant
c1 depending ore rather than being universal. The rest of the argument is the same.

O

4. The global saturation

Proof of Theorem 2.2 Let W be ak-dimensional normed space. Identiy with R*
in such a way thatl/vk)Bs c Bw C BS.

We use an analogous notation for convex bodies as in the proof of Thedrem
(but without the subscripp). In particular, we setZ = le\’(W) and we recall that
G = G(w) denotes an x Nk random matrix with independeny (0, 1/»)-distributed
Gaussian entries. We let

K = Bx(w) := G(w)(Bz) C R".
Recall that forj = 1,..., N, F; is the k-dimensional coordinate subspace @f'*

corresponding to thgth consecutive copy oV in Z; E; := G(F;), K; := G(F; N Bz)
and K} = G (spanF; :i # j1N Bz) = conv(K; : i # j); next, D; := G(F; N Bév")
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and D’/. = conv(Dj T # j). (The notationD; has been already used in the proof of
Theorem2.1, and the p-convex” analogue ofD’;, namelyD’. , was defined in3.4).)

The general structure of the argument is tfl1e same as in Thedrkerthe proof con-
sists of three steps dealing, respectively, with analysis of a single rotation, perturbation
of a given rotation and discretization (for a smoother narrative, here and in what follows
we refer to elements o) (n)—even those whose determinant is not 1—as rotations).
We will refer extensively to arguments in Secti@nand in [ST]. As in Section3, we
shall occasionally assume, as we may, thas large.

Stepl: Probability estimates for a fixed rotation.For the time being we fix: :

R" — R" with u € O(n). We shall show that, outside of an exceptional seiwf
of a small measure, there is a section’f u(K) which is 3-isomorphic taBy and
3-complemented (or, more precisely, that the identitpWdiB3-factors through the space
(R", K + u(K)).

We shall adopt the following description of the body + u(K). Let By & Bz
be the unit ball ofZ ® Z (i.e., R¥* & RV* with the ¢,-norm on the direct sum).
Next, consider the Gaussian opera6r® G : RV ¢ RV — R" @ R", acting in
the canonical way on the coordinates. Further, defidex] : R" & R* — R" by
[Id, u](x1, x2) = x1 + uxp, for (x1,x2) € R" ® R". Clearly, we haveK + u(K) =
[Id, u](G & G)(Bz ®« Bz). Instead offld, u] we can equally well uséus, uz], where
u1, u2 € O(n) are two rotations.

The difference between this setup and the schemfS®f is that in the latter one
considersQG” (Bz @1 Bz), whereG” is a 21 x 2Nk Gaussian matrix an@® a rankn
orthogonal projection oriR?”. Both schemes vyield quotients of random quotients of
Z @ Z, with G & G or G” being the random part anj1, u2] or Q the nonrandom
part. For the latter one may as well “rescale” the dimensions and congide¢B,),
where Q' is a (nonrandom) rankr /2| projection. The setting in Sectidhis identical,
except that we considesz ®p Bz, instead of By ®1 Bz.

To define exceptional sets we identify conditions similar to those in Se8ti@m in
Section 3 of[ST]). Recall that, forE ¢ R", we denote byPr the orthogonal projection
onto E. Now, for j € {1,..., N} and for O< k < 1, (a constant to be specified later),
we consider the set

g = {w € Q: Pg, (D} +u(D))) C ch;’S} ) (4.2)

These sets are analogous(wj in (3.8), and they will replace these latter sets in all
subsequent definitions. A similar proof as f@.26 in Section3, or (3.23) of [ST],
shows that

PE})>1- exp(—c1k®n), 4.2)
as long as

k> C'/maxk,log N}/n (4.3)
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for appropriate numerical constants > 0 and C’>1. The argument is again based
on Lemma3.4 since E; is independent oD’;, we may as well consider it fixed, and
then we are exactly in the setting of the Gaussian part of the lemma. We just need to
majorize M*(Bz) (or, more precisely, just of the unit ball (ﬂN 1(6 ) since theé2
factor corresponding t@'; does not enter intd’.), which is O(JWIW) by
reasons similar to—but simpler than—those that led to (3.20B®] (the calculations
sketched in the paragraph containit3yl® give a slightly larger majorant, which would
also suffice for our purposes).

Next, for j =1,..., N we let

Ry

lo={weQ:3(B5NE) CD;}. (4.4)

Since the condition in4.4) involves only one of the two inclusions appearing §19,
the same argument that led t8.16 (see also (3.16) ofST]) gives

P(E]0)>1—exp(—n/32). (4.5)

While in Theorem2.1 and in[ST] properties analogous to those implicit in the defi-
nitions of the setsE}, = ; were sufficient to ensure that the quotigdtk) contained
a well- complemented subspace well isomorphid\othis is not the case in the present
context and we need to introduce additional invariants.

Fix ap > 0 to be specified later (it will be of the order of ). Let o := tr (Id —u)/n,
and assume without loss of generality that <1 (replacing, if necessary by —u).
The proof now splits into two cases depending on whetherg or o < ag. To clarify
the structure of the argument let us mention that, among thessetd Z’ ; defined
above, Case “lwill use only the former ones, while Casé @ill involve both.

Casel°: Let a>ag.

Lemma 4.1. Let A be am x k random matrix with independem (0, 1/n)-distributed
Gaussian entries. Lat € O(n) with tru>0 and seto = tr (Id —u)/n (€ [0, 1]). Then
with probability greater than or equal t& — exp(—con + ¢~k log(2/«)), the following
holds for all &, (e R

V2 (12 4 12) " > /222 (12 + wat?) L @)

wherec > 0 is a universal constant.

We postpone the proof of the lemma until the end of the section and continue the
main line of the argument. Fof =1,..., N we let

H; = E; +u(Ej).
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We shall now use Lemm4.1 for the n x k matrix A = A; formed by thek columns
of the matrixG that spanE;. Denoting byZ; o the subset of2 on which inequalities
(4.6) holds, we have

P(Ej0)>1—exp(—can + c Yk log(1/x))

>1 — exp(—cagn + ¢tk log(1/a0)). 4.7)

Consider the following auxiliary set, closely related g g,
Aji=|oe @By N H)) C Dj+uD;)) and dimH; = 2k|. (4.8)

An elementary argument shows that the conditions #8)( are equivalent to
“JAE +uAl] Zco2max(|él, ]} for all & ¢ e RE” Since this is weaker than the
first inequality in @.6), it follows thatZ; o C A;.

Our next objective is to show that d&; o

1/2
| Pyl < /a2 (1P, 22 + | Pug 2I?) (4.9)

for everyz € R".

Note that sincef; andu(E;) are both subspaces &f;, it is sufficient to assume that
z € H;. Consider the operatdf : H; — E; ®ou(E;) given byT(z) = (Pg;z, Pu(e;)2)
for z € H;. Then inequality 4.9 is equivalent to|| 7% < (2/c)o~Y2. On the other
hand, the adjoint operatdf* : E; @2 u(E;) — H; is given by T*(x,y) = x +y
for x € E; and y € u(E;). Comparing the first and the third terms of.) yields
177 = (T I < (2/e)a Y2, as required.

Finally, consider another good set

2= {co € Q: Py, (D) +u(D)) C KBg} . (4.10)

Note that sinceu is orthogonal, we clearly havé, ;) = uPg,u* (this will be used
more than once). Comparing.LQ with the definition ofZ; (see 4.1)), we deduce
from (4.2) that

P@E)) = PE})>1 - exp(—c1k’n). (4.11)

We are now ready to complete the analysis specific to Caskeetw € Ej,oﬂE’iﬂE’;.

Then, combining4.9) with the definitions of=; andZ’ (i.e., with (4.1) and @.10) we
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see that, for alk € D./i + u(D;.),

[Pyl < /)02 (1 P,z + |PM<E_,>z|2)1/2< (@v2/c)r 2
or, equivalently,
Py, (D +u(D})) C (2V2/c)o*?kBj. (4.12)
As in the previous proofs we will impose a condition ennamely
2v/2/c)og i< ey k. (4.13)

Combining this inequality with4.12) and @.8), and recalling thaE; o C A; and that
wo <o, we are led to

Py, (D +u(D})) € 1/vVk (Dj +u(D))).
Finally, recalling the inclusions between the and theD-sets, we obtain
Py, (K +u(K}) C Kj +u(K;).
Consequently, similarly as in the previous proofs (&6, or [ST, (3.3)),
Py, (K + u(K)) C conv (Kj +u(K;), Pu; (K + u(K}))) C Kj+u(K;).

This means thaK; +u(K;) is a 1-complemented section &f 4 u(K). On the other
hand, let us note that, again b¢.§), dim H; = 2k, which implies thatK; + u(K ;)
(thought of as a normed space) is isometricB® @ Bw, thus showing thaid; N
(K +u(K)) is isometric toBw ®~ Bw as well.
We recall that the above conclusion was arrived at under the hypothesiE; o N
E/] N E/J/ As j € {1,..., N} was arbitrary, we deduce that under the hypothesis of
Case ? and the additional assumptiond4.) and @.13, the setK + u(K) admits a
1-complemented section isometric By provided thatw € U?’:l(Ej,o NE; NED.
Case2°: Let o < ap.
In this case the operatau is close to the identity operator. In particular, since
o =tr(ld —u)/n, we see that the norm

1d —uflus = (tr (1d —w)(1d —u*)) " = @(n — tr u))¥? = (2nx)1/?

is relatively small. To exploit this property we will need another lemma.
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Lemma 4.2. Let A be am x k random matrix with independem (0, 1/n)-distributed
Gaussian entries. Let T be anx n matrix, seta := ||T||ys and lety > 0. Then on a
set of probability larger than or equal t& — exp(—y?n/(2[T||?) + 2k), the following
holds for all ¢ = (¢;) € R¥

T A¢| <2(%+v> él. (4.14)

Again, we postpone the proof of the lemma and continue our argument; ¥if,
to be specified later. Fof =1,..., N, let

Elo= [a) €Q:(d-u)D; C 2(v2x + y)Bg] , (4.15)

As was the case with Lemmé.1, we shall apply the lemma to the x k& matrix
A = A; formed by thek columns of the matrixG that spanE;. We will also use
T = Id—u, so that||T||<2. Since, in that case;//n = /2, the inclusion from
(4.19 is equivalent to inequality4(14) and thus

P(E]0)>1— exp(—y*n/8+ 2k). (4.16)

The latter expression will be later made very close to 1 by an appropriate choice of
parameters.
Next we shall show that ifj € {1,..., N} andw € E; N E ;N E],, then

K;C PE_,- (K +u(K)) C 3K;. (4.17)
Clearly, this will imply that the section ok +u(K) by E; is 3-isomorphic toK ;, which
in turn is isometric toBy; and additionally, that it is 3-complemented. Consequently,
under the hypothesis of Casé, 2he assertion of Step | will be shown to hold on the
set U1 (B, oNEjoNE).

To show @.17), we first point out that ifB ¢ R" is any symmetric convex body,
then B + u(B) C 2B + (Id —u)(B). We then argue as follows:

K+u(K)CKj+Kj+u(K;)+u(K")
CKj+ D} +u(K;)+u(D))
C2K; + (d—u)K; + (D; + u(D;))

C2K; + 222+ By + (D) +u(D)),
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where the last inclusion is a consequence ©l%. Accordingly
Pg, (K +u(K)) C 2K + P, (D; + u(D;)) +2 <\/2u + y) BINE;
C 2K+ (ic+2v21+2)) (B3 N E),

with the last inclusion following from definitiond(1) of set E’j By definition @.4) of

E/j’o, the second term on the right is contained ik 2 2v/2x+ 2y)D;. Sincea < ap,
it follows that whenever

2 (K + 2200 + 2y) <1k, (4.18)
then
Pr; (K +u(K)) € 2K, + (1/vk) D; € 3K}

We thus obtained the right-hand side inclusion #1{); the left-hand side inclusion
is trivial. This ends the analysis specific to Case 2

Now is the time to choosep andy to satisfy our restrictions while yielding the opti-
mal concentration iboth cases under consideration. ConditioAs3), (4.13 and @.18
can be summarized a8'/maxk, log N}/n<x<c'ao/+/k and max /o, 7} <c'/vk,

for appropriate numerical constants> 0 andC’>1. We choosey, 7 and x so that
13 = g =y = /Vk. (4.19)

This choice takes care of all the restrictions except for the lower bound, avhich
can be now rephrased as

k<c min{n*/4, (n/log N)Y/3} (4.20)

for an appropriate numerical constant- 0.

We shall now analyze the estimates on the probabilities of the good sets contained
in (4.16), (4.7) and @.11). If k%/n is sufficiently small, a condition which is weaker
than @.20), then the term R in the exponent in4.16) is of smaller order than the first
term, and so it does not affect the form of the estimate. The situation is slightly more
complicated in the case ofl(7): to absorb the second term in the exponent we need
to know thatk log (1/0g) is sufficiently smaller thanmpn; given thatog = O(1/k) (cf.

(4.19), this is equivalent to
n
k< ! -
¢ V 1+ logn
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for an appropriate numerical constarit > 0. Again, this is a condition weaker than
(4.20, at least for sufficiently larg@. The probability estimates in question are thus,
respectively, of the form % exp(—csy?n), 1— exp(—caoon) and 1— exp(—c1x2n), for
appropriate universal constants, cp, c3 > 0. Substituting the values fotg, y and k
defined by 4.19 we get, under hypothesig.@0), the following minoration

min{PE)). PE). PE).0). PE] o). P(E] o)) > 1~ exp—con/k%),  (4.21)

again for an appropriate numerical constagt> 0. We point out that the argument
above treated just the first four terms under the minimum; U?(m o) we have the
stronger estimate4(5), which does not require any additional assumptlons

We are now ready to conclude Step I. Consider the exceptional set defined by one
of two different formulae, depending on whether we are in Ca&serlCase 2. In
Case t we set

N
—0 . - = A=
= .:Q\U(.:j’oﬂ:.’j ”)
=1

(see 4.6) and the paragraph following it4(1), (4.10 for the definitions). In Case°2
we let

(see 4.4), (4.15 and @.1) for the definitions). The argument above shows that for
w ¢ =0 there is a section oK + u(K) 3-isomorphic toBy and 3-complemented.

It follows readily from what we have shown up to now that the &¥sare expo-
nentially small. For example, byt(21),

P(Q\ (Ej0NE;NE))<3 exp(—con/k%) (4.22)

for any j € {1,..., N}, and identical estimates hold for exceptional sets relevant to
Case 2. However, to finalize Step | we need to majorize the probabilityE8fmuch
more efficiently. To this end we argue in the same way as in Section [$Tdf We
could also follow the argument from Sectid above, but in the present situation,
when we are dealing with the convex hulls of sets—suchKasor D;—rather then
the p-convex hulls of the same sets, wifh > 1, the latter option would only add
unnecessary complications. However, for reader's convenience, we will also include a
few comments pertaining to the proof of Theor@.

We first employ the “decoupling” procedure based on Lemma 3[&ir (which is
a special case of Lemm&a2 above for a “0-1" matrixA). More precisely, we do need
and do have estimates on conditional probabilities which are obtained in essentially the



S.J. Szarek, N. Tomczak-Jaegermann/Journal of Functional Analysis 221 (2005) 407-4338

same way as there (and are also parallel to the estimate@%aarlier in this paper).
Essential use is also made of the exceptional set

Q' :={w:D ¢ 2B})

(defined in (3.17) ofST] and analogous t®* in Section3) and the precise statements
involve Q' and sets related to it. Again, the key point is that the linear subspace
(resp.E;+u(E;)) and the sets with which it is being intersected (or which are projected
onto it) depend on disjoint blocks of columns &f and hence are independent. The
decoupling procedure and the estimate frof2Q) lead to

PEC) < Ne /32 4 (2’) <Sefcon/k3>€ < Ne /32 4 g=caN/k® (4.23)

wheret¢ = [N/3] (cf. (4.22). This is almost identical to (3.25) ¢8T] (and analogous
to (3.28 above). Let us emphasize that the &4 responsible for the first term of the
estimate, is independent an and therefore, wherd(23 is combined with thej-net
argument in Step Il below, only the second term will have to be multiplied by the
cardinality of the net.

Stepll: Stability under small perturbations of the rotation uWe will now prove
that there exists (a not too smatf)> 0 such that ifu € O(n) and w ¢ E° (where
=0 is defined starting with this particula) and if u’ € O(n) with |lu — u|| <3, then
u' and w satisfy essentially the same conditions as those defisfhgAs in [ST] (and
analogously as in Sectia® above), this will be shown under an additional assumption,
namely thatw ¢ Q' (the definition of @* was recalled above). It will then follow
that, for anyu«’ as above, the random bodg corresponding to anys ¢ Q' U =°
will have the property thak + u/(K) has a section that is 3-isomorphic By and
3-complemented provided the parameters involved in the construction satisfy conditions
differing from those of Step | (which, we recall, were ultimately reduced juséid()
only by values of the numerical constants.

We start by pointing out that conditiod.d) does not involveu and so it is trivially
stable. Next, we consided 1) which, while nontrivial, is easy to handle. We have

u’(D}) C u(Df/-) + 20B}

(becausan ¢ Q') and so if6<k/2, we get 4.1) for «’ in place ofu, at the cost of
replacingk by 2« on the right-hand side of the inequality.

Condition @.15 is also simple: ifo ¢ Q' and <y, and if 4.19 is satisfied foru,
then it is clearly satisfied for’ with the factor 2 on the right-hand side replaced by
3. (Note that this argument works for a genemaleven though conditiond(15 enters
the proof only in Case ?2)

Next we assume that we are in Casedhd discuss the stability dE; o, defined
by inequality @.6) (where the matrixA = A; has been described in the paragraph
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following Lemma4.1). We clearly have

|AjE+u' AL Z[A;E+uA | = llu —u'Il|A;]

1/2
> a2 (12 +102)7 - 20101

So if 5<cal/2/4, we get a version of the first inequality i4.€) with «’ in place ofu
and c on the right-hand side replaced by2. The second inequality follows similarly.
Since (given that we are in Casé) x> o, we see that the condition ahis satisfied
when 5<cocé/2/4.

It remains to check the stability o#(10. SetR = u’ — u, then||R|| < and, using

Py (g;) = u'Pg;u’", we obtain

Pu (k) (D + /(D)) =u'Pg; (u™ D} + D))
= (u+ R)Pg; (" + R")Dj + Df)
C (u+ R)Pg, ((u*D; +D)) + 2533)
CuPg;w* D + D)) + 20uPg; By + RPE;(4B})

CuPg;(u*Dj + D) 4 65Bj.

Sinceu Pg;u* = Py(k,, insisting thaté <x/6 will guarantee that" satisfies the inclu-
sion from @.10 with x replaced by R.

Finally, let us remark that the distinction between Caseésaftd 2 is likewise
essentially stable under small perturbationsuinthe parameter is 1-Lipschitz with
respect to the operator norm and s@ ifs less thar% of the threshold valugg = c’z/k,
then the inequalities defining Case dnd 2 will have to be modified at most by factor
2 when passing fronu to «’ (or vice versa).

Comparing the obtained conditions érwe see that the most restrictiveds{x/6 =
¢”’k=3/2. Since, by 4.20 (and, ultimately, by the hypothesis of the theorek)s at
most of the order ofi}/4, the appropriate choice &= O (n—%/8), will cover the entire
range of possible values &f This supplies the value aof that needs to be used in the
discretization (ad-net argument) to be implemented in Step Il below.

Steplll: A discretization argument.The procedure is fully parallel to that of Sec-
tion 3: we introduce aj-net of O(n), sayUd, and then combine the exceptional sets
corresponding to the elementsgf For the argument to work, it will be sufficient that
the cardinality oft/ multiplied by the probability of the exceptional set corresponding
to a particular rotationu (i.e., the second term at the right-hand side 4f28) is
small. As is well known (see, e.gi$1,S2), O(n) admits, for anyd > 0, a d-net (in
the operator norm) of cardinality not exceedifg/)%™m ©®  whereC is a universal
constant. Our choice of = 0(1/nf) (where = g, see the last paragraph of Step II)
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leads to the estimate
log [U| < O(Bn?(1 + log n)).

For the probability of combined exceptional sets to be small it will thus suffice that,
for an appropriately chosers > 0,

pn?(1 + log n) <csN/k3

(cf. (4.23). Since, as in the argument at the end of Step Il, we may assumé that
at most of the order ofi'/4, the condition above may be satisfied in the entire range
of possible values ok with N = O0(n/4(1 + log n)). Since such a choice implies
that we have then loy = O(log n), the restrictions given by4(20) reduce, at least
for large n, to k <cn'/*—exactly the hypothesis of the theoreni]

To complete the proof of Theorer®.2 it remains to prove Lemmad.1 and 4.2
The arguments are fairly straightforward applications of the Gaussian isoperimetric
inequality, or Gaussian concentration, again in the form given, e.g[L ifFormula
(2.35)]

Proof of Lemma 4.1 Fix &, { e R* with |{|?+]¢|?2 = 1 and considelf := |A& + uA(|

as a function of the argumert Thenf is v/2-Lipschitz with respect to the Hilbert—
Schmidt norm. Therefore, Gaussian concentration inequalities imply that the function
f must be strongly concentrated around its expected valfieSpecifically, we get for
t>0

P(f — Ef| > 1) < 2 exp(—nt?/4). (4.24)
To determine the magnitude &ff, we shall first calculate the second moment.
Ef2=E|A¢ +uAl?
2 FEuAl)? + 2E(AE, uAQ)

) . . tr u
=112 + |12+ 2(¢,0) —,

=E|A¢

the last equality following, for example, by direct calculation in coordinates. The
assumption|&|? + |{|?> = 1 implies [(¢, {)|<3 and so, recalling our notation =
tr(ld —u)/n = 1—tr u/n, we deduce that

a<Ef?<2—a

Since, by the Khinchine—Kahane inequality, the- and the L;-norm of a Gaussian
vector differ at most by factogy/n/2 (se€[LO] for an argument which gives the optimal
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value of the constant), it follows that
e1:=2/1 Va<Ef <2 -0

Thus choosing = ¢1/3 in (4.29) yields
P (281/3< |AE + uAl <V2—a+ 51/3) >1 - 2ene/(18D) (4.25)

The estimates omA¢ + uA{| and the associated probabilities extend appropriately by
homogeneity to any, { € R. The next step is now standard: we choose a proper
net in the set{¢, { € R* : |12+ |¢|2 = 1} and if the estimates omA¢ + uA(| hold
simultaneously for all elements of that net, it will follow that

3V2/m Vo (1E2 + 1UPHY2IAE + uAl <2(1E% + P2

for all &, ¢ e R*. The left-hand side inequality above yields then the first inequality in
(4.6). The right-hand side inequality is a statement formally stronger than the second
inequality in @.6).

To conclude the argument we just need to assure the proper resolution of the net
and to check its cardinality. Generally, if a linear map is bounded from abovB by
on ane-net of the sphere, it is bounded on the entire sphereBby B/(1 — ¢). If
it is additionally bounded on the net from below bythen it is bounded from below
on the entire sphere by = b — B’¢. If we chooses = ¢1/6, then the resultingd’
is < 2, and sob’ > 2¢1/3 — 2¢ = ¢1/3, as required. Finally, the-net can be chosen
so that its cardinality is<(1+ 2/¢)% = (1+ /I8r/®)%, and so the logarithm of
the cardinality isO (k log(2/x)). Combining this with 4.25 we obtain an estimate on
probability which is exactly of the type asserted in Lemima O

Proof of Lemma 4.2 The argument here is similar to that of Lemmal but sub-
stantially simpler since we need only an upper estimate. First, we may assume without
loss of generality thal is diagonal. A direct calculation shows then tI'ﬂi’;\|tTAé|2 =
(ITlI3g/n) IE%. Thus, if |¢] = 1, thenE |TAE| <a/+/n, while the Lipschitz constant

of |TA¢E| (in argumentA, with respect to the Hilbert—-Schmidt norm) is|T|. It is

now enough to choose é—net on the spherg*—1 and argue as earlier, but paying
attention to upper estimates only ]
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