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Abstract

We prove several results of the following type: given finite-dimensional normed spaceV
possessing certain geometric property there exists another spaceX having the same property
and such that (1) log dimX = O(log dimV ) and (2) every subspace ofX, whose dimension
is not “too small”, contains a further well-complemented subspace nearly isometric toV. This
sheds new light on the structure of large subspaces or quotients of normed spaces (resp., large
sections or linear images of convex bodies) and provides definitive solutions to several problems
stated in the 1980s by Milman.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

This paper continues the study of thesaturation phenomenonthat was discovered in
[ST] and of the effect it has on our understanding of the structure of high-dimensional
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normed spaces and convex bodies. In particular, we obtain here a dichotomy-type result
which offers a near definitive treatment of some aspects of the phenomenon. We sketch
first some background ideas and hint on the broader motivation explaining the interest
in the subject.

Much of geometric functional analysis revolves around the study of the family of
subspaces (or, dually, of quotients) of a given Banach space. In the finite-dimensional
case this has a clear geometric interpretation: a normed space is determined by its unit
ball, a centrally symmetric convex body, subspaces correspond to sections of that body,
and quotients to projections (or, more generally, linear images). Such considerations are
very natural from the geometric or linear-algebraic point of view, but they also have
a bearing on much more applied matters. For example, a convex set may represent
all possible states of a physical system, and its sections or images may be related to
approximation or encoding schemes, or to results of an experiment performed on the
system. It is thus vital to know to what degree the structure of the entire space (resp.,
the entire set) can be recovered from the knowledge of its subspaces or quotients (resp.,
sections/images). At the same time, one wants to detect some possible regularities in
the structure of subspaces which might have not existed in the whole space.

A seminal result in this direction is the 1961 Dvoretzky theorem, with the 1971
strengthening due to Milman, which says that every symmetric convex body of large
dimensionn admits central sections which are approximately ellipsoidal and whose
dimensionk is of order logn (the order that is, in general, optimal). Another major
result was the discovery of Milman[M2] from the mid 1980s thatevery n-dimensional
normed space admits asubspace of a quotientwhich is “nearly” Euclidean and whose
dimension is��n, where� ∈ (0,1) is arbitrary (with the exact meaning of “nearly”
depending only on�). Moreover, a byproduct of the approach from[M2] was the fact
that everyn-dimensional normed space admits a “proportional dimensional” quotient of
boundedvolume ratio, a volumetric characteristic of a body closely related to cotype
properties (we refer to[MS1,T,P2] for definitions of these and other basic notions and
results that are relevant here). This showed that one can get a very essential regularity
in a global invariant of a space by passing to a quotientor a subspace of dimension,
say, approximatelyn/2. It was thus natural to ask whether similar statements may be
true for other related characteristics. This line of thinking was exemplified in a series
of problems posed by Milman in his 1986 ICM Berkeley lecture[M3] .

The paper[ST] elucidated this circle of ideas and, in particular, answered some of
the problems from[M3] . A special but archetypal case of the main theorem from[ST]
showed the existence of ann-dimensional spaceY whoseevery subspace (resp.,every
quotient) of dimension�n/2 contains a further 1-complemented subspace isometric
to a preassigned (but a priori arbitrary)k-dimensional spaceV, as long ask is at
most of order

√
n. In a sense,Y was saturatedwith copies of theV. This led to the

discovery of the following phenomenon: passing to large subspaces or quotientscannot,
in general, erasek-dimensional features of a space ifk is below certain threshold value
depending on the dimension of the initial space and the exact meaning of “large”. In
the particular case stated above, i.e., that of “proportional” subspaces or quotients, the
threshold dimension was (at least) of order

√
n, and “impossibility to erase” meant that

every such subspace (resp., quotient map) preserved a copy of the givenV.
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However, the methods presented in[ST] were not sufficient for a definitive treatment
of the issue at hand. For example, we prove in the present paper that, for anyq > 2,
there are spaces of cotypeq (of arbitrarily high-dimensionn, with uniform control of
constants) whose all, say,n/2-dimensional subspaces are poorlyK-convex (or, equiva-
lently, contain rather large subspaces well-isomorphic to finite-dimensional�1-spaces).
This is in stark contrast to the extremal case ofq = 2: as it has been known since
mid 1970s, every space of cotype 2 admits proportional subspaces which are nearly
Euclidean (which is of course incomparably stronger than beingK-convex). By com-
parison, in[ST] a similar result was established only forq > 4. This answered one of
the questions of Milman, but still left open a possibility that an intermediate hypothesis
weaker than cotype 2 (such as cotypeq with 2< q�4) could force existence of nice
subspaces. Our present theorem closes this gap completely, and has the character of a
dichotomy: for q = 2 every space of cotype 2 admits proportional nearly Euclidean
subspaces, while for anyq > 2 there exist spaces of cotypeq without largeK-convex
subspaces at all. It was important to clarify this point since hypothetical intermediate
threshold values ofq (namely, q = 4) appeared in related—and still not completely
explained—contexts in the asymptotic geometric analysis literature, cf.[B] (see also
[T, Proposition 27.5]) or [P1].

Another variation of the saturation phenomenon that is being considered here ad-
dresses what has being referred to recently as “global properties”. It has been realized
in the last few years (cf.[MS2]) that manylocal phenomena (i.e., referring to sub-
spaces or quotients of a normed space) haveglobal analogues, expressed in terms of
the entire space. For example, a “proportional” quotient of a normed space corresponds
to the Minkowski sum of several rotations of its unit ball. Dually, a “proportional” sub-
space corresponds to the intersection of several rotations. (Such results were already
implicit, e.g., in [K] .) Here we prove a sample theorem in this direction concerning
the Minkowski sum of two rotations of a unit ball, which answers a query directed to
us by Milman.

We use the probabilistic method, and employ the “blueprint” for constructing random
spaces that was developed by Gluskin in[G] (the reader is also referred to[MT]
for a survey of other results and methods in this direction). In their most general
outline, our arguments parallel those of[ST]. However, there are substantial differences,
and the present considerations are much more subtle than those of[ST]. Moreover,
we believe that several ingredients (such as a usage of Lemma3.2-like statement to
enable decoupling of otherwise dependent events, or Lemma3.3), while playing mostly
technical role in this paper, are sufficiently fundamental to be of independent interest.

The organization of the paper is as follows. In the next section, we describe our
main results and their immediate consequences. We also explain there the needed
conventions employed by experts in the field, but not necessarily familiar to the more
general mathematical reader. (Otherwise, we use the standard notation of convexity and
geometric functional analysis as can be found, e.g., in[MS1,P2] or [T] .) Section3
contains the proof of Theorem2.1, relevant to the dichotomy mentioned above and
to Problems 1–3 from[M3] . Section4 deals with the global variant of the saturation
phenomenon.
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2. Description of results

The first result we describe is asubspacesaturation theorem. The approach of[ST]
makes it easy to implement a saturation property for subspaces. Indeed, the dual space
X∗ of the space constructed in[ST], Theorem 2.1 has the property that, under some
assumptions onm, k and n := dim X∗, everym-dimensionalsubspaceof X∗ contains
a (1-complemented) subspace isometric toV (whereV is a preassignedk-dimensional
space). In this paper, we show that the construction can be performed while preserving
geometric features of the spaceV (specifically, cotype properties), a trait which is
crucial to applications.

Theorem 2.1. Let q ∈ (2,∞] and let ε > 0. Then there exist� = �q ∈ (0,1) and
c = cq,ε > 0 such that whenever positive integers n andm0 verify c−1 n��m0�n and
V is any normed space with

dim V �cm0/n
�,

then there exists an n-dimensional normed space Y whose cotype q constant is bounded
by a function of q and the cotype q constant of V and such that, for any m0�m�n,
everym-dimensional subspacẽY of Y contains a(1+ε)-complemented subspace(1+ε)-
isomorphic to V.

Let us start with several remarks concerning the hypotheses onk := dim V andm0
included in the statement above. If, say,m0 ≈ n/2, then k of order “almost” n1−�

is allowed. Nontrivial (i.e., large) values ofk are obtained wheneverm0 � n�; we
included the lower bound onm0 in the statement to indicate for which values of the
parameters the assertion of the theorem is meaningful.

We can now comment on the relevance of Theorem2.1 to problems from[M3] .
Roughly speaking, Problems 2 and 3 asked whether every space of nontrivial cotype
q < ∞ contains a proportional subspace of type 2, or even justK-convex. This is
well known to be true ifq = 2 due to presence of nearly Euclidean subspaces. (For a
reader not familiar with the type/cotype theory it will be “almost” sufficient to know
that a nontrivial (i.e., finite) cotype property of a space is equivalent to the absence of
large subspaces well isomorphic to�∞-spaces; similarly, nontrivial type properties and
K-convexity are related to the absence of�1-subspaces.) Accordingly, by choosing, for
example,V = �k1 in the theorem, we obtain—in view of the remarks in the preceding
paragraph on the allowed values ofk and m—a space whose all “large” subspaces
contain isometrically�k1 and which consequently provides a counterexample to the
problems forany q > 2. More precisely, ifm0 is “proportional” ton andV = �k1 is of
the maximal dimension that is allowed, then the type 2 constant of any corresponding
subspaceỸ of Y from the theorem is at least of ordern(1−�)/2 (and analogously for
any nontrivial typep > 1). The K-convexity constant of any such̃Y is at least of
order

√
log n (up to a constant depending onq). Problems 2 and 3 from[M3] are thus

answered in the negative in a very strong sense. Problem 1 from[M3] corresponds to
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q = ∞ in Theorem2.1 (i.e., no cotype assumptions) and has already been satisfactorily
treated in[ST]; however, the present paper offers a unified discussion of all the issues
involved (see also related comments later in this section).

We also remark that choosingV = �kp (for some 1< p < 2) in Theorem2.1 leads
to a spaceY whose typep and cotypeq constants are bounded by numerical constants
and such that, for everym-dimensional subspacẽY of Y and everyp < p1 < 2, the
type p1 constant ofỸ is at leastk1/p−1/p1. If m0 is “proportional” to n, the typep1
constant ofỸ is at least of ordern(1−�)(1/p−1/p1), in particular it tends to+∞ as
n→∞. On the other hand, the spacesỸ andY are then, by construction, uniformly
(in n) K-convex.

Theorem2.1 will be an immediate consequence of the more precise and more tech-
nical Proposition3.1 stated in the next section. That statement makes the dependence
of the parametersc, � on ε > 0 andq ∈ (2,∞) more explicit. This will allow us, by
letting q → ∞, to retrieve the caseq = ∞ and then, by passing to dual spaces, to
reconstruct (up to a logarithmic factor) the main theorem from[ST]: if n, m0 and k
satisfy

√
n log n�m0�n and k�m0/

√
n log n, then for every k-dimensional normed

space W there exists an n-dimensional normed space X such that every quotientX̃ of
X with dim X̃�m0 contains a1-complemented subspace isometric to W.

We wish now to offer a few comments on the construction that is behind
Theorem2.1, and which is implicit in Proposition3.1. To this end, we recall some
notation and sketch certain ideas from[ST], which also underlie the present
argument.

If W is a normed space and 1�p < ∞, by �Np (W) we denote the�p-sum of N
copies ofW, that is, the space ofN-tuples (x1, . . . , xN) with xi ∈ W for 1� i�N ,
with the norm‖(x1, . . . , xN)‖ =

(∑
i ‖xi‖p

)1/p. It is a fundamental and well-known
fact that the spaces�Np (W) inherit type and cotype properties of the spaceW, in the
appropriate ranges ofp (cf. e.g., [T, Section 4]).

The saturating construction from[ST] obtainedX∗ as a (random) subspace of�N∞(V ),
for appropriate value ofN. This is not the right course of action in the context of
Theorem2.1 since such a subspace will typically contain rather large subspaces well
isomorphic to�s∞, hence failing to possess any nontrivial cotype property. However,
substitutingq for ∞ works: the space�Nq (V ) and all its subspaces will be of cotype
q if V is. The approach of[ST] was to concentrate on the case of�N∞(V ), and then
to use the available “margin of error” to transfer the results toq sufficiently close to
∞. By contrast, to handle the entire range 2< q < ∞ we need to workdirectly in
the �q setting, which—as is well known to analysts—often requires much more subtle
considerations.

To state the next theorem, it will be helpful to subscribe to the following “philosophy”
and notational conventions. Since a normed spaceX is completely described by its unit
ball K = BX or its norm ‖ · ‖X, we shall tend to identify these three objects. In
particular, we will write ‖ · ‖K for the Minkowski functional defined by a centrally
symmetric convex bodyK ⊂ Rn and denote the resulting normed space by(Rn, ‖ ·‖K)
or just (Rn,K). Two normed spaces are isometric iff the corresponding convex bodies
are affinely equivalent.
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As suggested in the Introduction, it is of interest to consider “global” analogues
of Theorem2.1-like statements. The following is a sample result that corresponds to
the “local” Theorem 2.1 of [ST], and that was already announced in that
paper.

Theorem 2.2. There exists a constantc > 0 such that, for any positive integersn, k
satisfyingk�cn1/4 and for every k-dimensional normed space W, there exists an n-
dimensional normed spaceX = (Rn,K) such that, for any u ∈ O(n), the normed
space(Rn,K + u(K)) contains a3-complemented subspace3-isomorphic to W.

In general, the interplay between the global and local results is not fully understood.
While it is an experimental fact that a parallel between the two settings exists, there
is no formal conceptual framework which explains it. It is thus important to provide
more examples in hope of clarifying the connection. It is also an experimental fact that
the local results and their global analogues sometimes vary in difficulty. In the present
context, the proof of Theorem2.2 is substantially more involved than that of its local
counterpart, Theorem 2.1 from[ST].

We conclude this section with several comments about notation. As mentioned earlier,
our terminology is standard in the field and all unexplained concepts and notation can
be found, e.g., in[MS1,P2] or [T] . The standard Euclidean norm onRn will be always
denoted by| · |. (Attention: the same notation may mean elsewhere cardinality of a
set and, of course, the absolute value of a scalar.) We will writeBn2 for the unit ball
in �n2 and, similarly but less frequently,Bnp for the unit ball in�np, 1�p�∞.

For a setS ⊂ Rn, by conv(S) we denote the convex hull ofS. If 1�p < ∞, we
denote by convp(S) the p-convex hull of S, that is, the set of vectors of the form∑

i tixi , where ti > 0 and xi ∈ S for all i, and
∑

i t
p
i = 1. (In particular, forp = 1,

convp(S) = conv(S).)
The arguments below will use various subsets ofRn obtained as convex hulls orp-

convex hulls, for 1< p <∞, of some more elementary sets, or linear images of those;
indeed for Theorem2.1 we have to consider the case ofp > 1, while in Theorem2.2
the case ofp = 1 is sufficient. In order to emphasize the parallel roles which these
sets (and other objects such as subspaces) play in the proofs throughout this paper and
its predecessor[ST], we try to keep a unified notation for them, and to distinguish
them by adding a subscript·p when the set depends onp. This will also make possible
references to[ST].

3. Saturating spaces of cotypeq> 2

Theorem2.1 will be an immediate consequence of the following technical proposi-
tion.

Proposition 3.1. Let 2 < q <∞ and set� := (q − 2)/(2q + 2) (∈ (0, 1
2)). Let n and

m0 be positive integers with
√
q n1−�(log n)(1−2�)/3�m0�n. Let V be any normed
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space with

dim V � c1m0

q1/2 n1−�(log n)(1−2�)/3

(wherec1 > 0 is an appropriate universal constant). Then there exists an n-dimensional
normed space Y whose cotype q constant is bounded by a function of q and the cotype
q constant of V and such that, for anym0�m�n, every m-dimensional subspacẽY of
Y contains a21/q -complemented subspace21/q -isomorphic to V. Moreover, for every
ε > 0, we may replace the quantity21/q by 1+ ε, at the cost of allowingc1 to depend
on ε.

Proof. Fix 2 < q < ∞ and let p = q/(q − 1) be the conjugate exponent. Let
1�k�m�n�kN be positive integers. More restrictions will be added on these pa-
rameters as we proceed, and in particular we shall specifyN (depending also onq) at
the end of the proof. Notice that choosing the constantc1 small makes the assertion
vacuously satisfied for small values ofm0, and so we may and shall assume thatm0, n

andN are large.
Let V be ak-dimensional normed space. IdentifyV with Rk in such a way that the

Euclidean ballBk2 and the unit ballBV of V satisfyBk2 ⊂ BV ⊂
√
k Bk2 (for example,

Bk2 may be the ellipsoid of maximal volume contained inBV ). As indicated in the
preceding section, we shall construct the spaceY as a (random) subspace of�Nq (V ),
the �q -sum of N copies ofV. We will actually work in the dual setting of random
quotients ofZp := �Np (W), whereW := V ∗; as frequent in this type of constructions,

the geometry of that setting is more transparent. The above identification ofV with Rk

induces the identification ofW with Rk, and thus allows to identifyZp with RNk.
Let G = G(�) be an×Nk random matrix (defined on some underlying probability

space(�,P)) with independentN(0,1/n)-distributed Gaussian entries. ConsiderG as
a linear operatorG : RNk → Rn and set

Kp = BXp(�) := G(�)(BZp) ⊂ Rn. (3.1)

The random normed spaceXp = Xp(�) can be thought of as a random (Gaussian)
quotient ofZp, with G(�) the corresponding quotient map andKp the unit ball ofXp.
(The normalization ofG is not important; here we choose it so that, withk,N in the
ranges that matter, the radius of the Euclidean ball circumscribed onKp be typically
comparable to 1.)

We reiterate that the dual spacesX∗p = Xp(�)∗ are isometric to subspaces ofZ∗p =
�Nq (V ) and so their cotypeq constants are uniformly bounded (depending onq and the
cotypeq constant ofV). We shall show that, for appropriate choices of the parameters,
the spaceY = Xp(�)∗ satisfies, with probability close to 1, the (remaining) assertion of
Theorem2.1 involving the subspaces well isomorphic toV. This will follow if we show
that, outside of a small exceptional set, every quotientX̃p(�) of Xp(�) of dimension
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m�m0 contains a 21/q -complemented subspace 21/q -isomorphic toW, for values ofk
described in Theorem2.1 (and analogously for 1+ε in place of 21/q ). To be absolutely
precise, we shall show that the identity onW well factors throughXp(�), a property
which dualizes without any loss of the constant involved. Thus, we have a very similar
problem to the one considered in[ST], however the present context requires several
subtle technical modifications of the argument applied there.

Similarly as in[ST], we will follow the scheme first employed in[G]: Step I showing
that the assertion of the theorem is satisfied for afixed quotient map with probability
close to 1; Step II showing that the assertion is “essentially stable” under small per-
turbations of the quotient map; and Step III which involves a discretization argument.

We start by introducing some notation that will be used throughout the paper. Denote
by F1, . . . , FN the k-dimensional coordinate subspaces ofRNk corresponding to the
consecutive copies ofW in Zp. In particular, from the definition of the�p-sum we
have

BZp = convp(Fj ∩ BZp : j ∈ {1, . . . , N}).

For j = 1, . . . , N , we define subsets ofRn as follows: Ej := G(Fj ), Kj :=
G(Fj ∩ BZp) and

K ′j,p := G(span{Fi : i �= j} ∩ BZp). = convp(Ki : i �= j). (3.2)

We point out certain ambiguity in the notation:Kp, p ∈ (1,2), is the unit ball of
Xp, while Kj , j ∈ {1, . . . , N} stands for the section ofKp corresponding toEj . This
should not lead to confusion since, first, the sectionsdo notdepend onp and, second,
p remains fixed throughout the argument. (We keep the subscript·p mostly to facilitate
references between various parts of this paper and to[ST].) Similar caveats apply to
the families of setsD·, K̃· and D̃· which are defined in what follows.

In addition toKp and theKj ’s, we shall need subsets constructed in an analogous
way from the Euclidean balls. First, forj = 1, . . . , N , setDj := G(Fj ∩ BNk2 ). Then
let

Dp := G
(
convp(Fj ∩ BNk2 : j ∈ {1, . . . , N})

)
= convp(Dj : j ∈ {1, . . . , N}). (3.3)

Next, for j = 1, . . . , N , let

D′j,p := G
(
convp(Fi ∩ BNk2 : i �= j)

)
= convp(Di : i �= j). (3.4)

Finally, for a subsetI ⊂ {1, . . . , N}, we let

DI,p := G
(
convp(Fi ∩ BNk2 : i ∈ I )

)
= convp(Di : i ∈ I ). (3.5)
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Note that since 1√
k
Bk2 ⊂ BW ⊂ Bk2, it follows that 1√

k
Dj ⊂ Kj ⊂ Dj . Consequently,

analogous inclusions hold for all the correspondingK- and D-type sets as they are
p-convex hulls of the appropriateKj ’s andDj ’s.

Step I: Analysis of a single quotient map.Since a quotient space is determined up
to an isometry by the kernel of a quotient map, it is enough to consider quotient
maps which areorthogonal projections. Let, for the time being,Q : Rn → Rm

be the canonical projection on the firstm coordinates. In view of symmetries of our
probabilistic model, all relevant features of this special case will transfer to an arbitrary
rankm orthogonal projection.

Let G̃ = QG, i.e., G̃ is them × Nk Gaussian matrix obtained by restrictingG to
the firstm rows. Let K̃p = Q(Kp) = G̃(BZp) and denote the space(Rm, K̃p) by X̃p;

the spaceX̃p is the quotient ofXp induced by the quotient mapQ. We shall use the
notation of Ẽj , K̃j , K̃ ′j,p for the subsets ofRm defined in the same way asEj , Kj ,

K ′j,p, above, but using the matrix̃G in place ofG. Analogous convention is used to

define theD̃-type setsD̃p, D̃j and D̃′j,p.
For any subspaceH ⊂ Rm, we will denote byPH the orthogonal projection onto

H. We shall show that outside of an exceptional set of small measure there exists
j ∈ {1, . . . , N} such thatP

Ẽj
(K̃ ′j,p) ⊂ K̃j . Note that, for any giveni, we always have

K̃p = convp(K̃i, K̃
′
i,p) and K̃i ⊂ Ẽi . It follows that, for j as above,

P
Ẽj
(K̃p) = convp(K̃j , PẼj

(K̃ ′j,p)) ⊂ 21/qK̃j . (3.6)

Note thatK̃j is an affine image of the ballFj∩BZp , which is the ballBW on coordinates

from Fj . On the other hand,̃Ej considered as a subspace ofX̃p (thus endowed with
the ball Ẽj ∩ K̃p) satisfies, by (3.6), K̃j ⊂ Ẽj ∩ K̃p ⊂ 21/qK̃j , which makes it 21/q -
isomorphic toBW . Using (3.6) again we also get the 21/q -complementation. (Similarly,
P
Ẽj
(K̃ ′j,p) ⊂ εK̃j will imply (1+ ε)-isomorphism and(1+ ε)-complementation.)

Returning to inclusions between theK- andD-type sets, they also hold for thẽK-
and D̃-type sets, so that, for example,1√

k
D̃j ⊂ K̃j ⊂ D̃j . Consequently, in order for

the inclusionP
Ẽj
(K̃ ′j,p) ⊂ K̃j to hold it is enough to have

P
Ẽj
(D̃′j,p) ⊂

1√
k
D̃j . (3.7)

The rest of the proof of Step I is to show that, with an appropriate choice of the
parameters, this seemingly rough condition is satisfied for somej ∈ {1, . . . , N}, outside
of a small exceptional set.

Let us now pass to the definition of the exceptional set. We start by introducing, for
j ∈ {1, . . . , N}, the “good” sets/events. Fix a parameter 0< ��1 to be determined
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later, and let

�′
j :=

{
� ∈ � : P

Ẽj
(D̃′j,p) ⊂ �Bm2

}
, (3.8)

�′
j,0:=

{
1

2

√
m

n
(Bm2 ∩ Ẽj ) ⊂ D̃j ⊂ 2

√
m

n
(Bm2 ∩ Ẽj )

}
. (3.9)

Now if �, k, m and n satisfy

�� 1√
k
· 1

2

√
m

n
, (3.10)

then, for� ∈ �′
j ∩�′

j,0, inclusion (3.7) holds. Thus, outside of the exceptional set

�0 := � \
⋃

1� j�N

(
�′
j ∩�′

j,0

) = ⋂
1� j�N

(
(� \�′

j ) ∪ (� \�′
j,0)

)
, (3.11)

there existsj ∈ {1, . . . , N} such that (3.7) holds, and this implies, by an earlier
argument, that there existsj ∈ {1, . . . , N} such thatẼj considered as a subspace of
X̃p is 21/q -complemented and 21/q -isomorphic toW.

A note about notation is in place here. While for the subsets of Euclidean spaces
such asKp,Dj , etc. it was possible to keep a unified convention throughout various
parts of this paper and its predecessor[ST], the structures of the corresponding families
of exceptional events are not fully parallel and so, to avoid misunderstandings, we use
different letters in distinct contexts:� in this section vs.� in Section 4 and� in
[ST]. However, we attempted to keep the same pattern of indices for analogous events
whenever possible.

It remains to show that the measure of the exceptional set�0 is appropriately small;
this will be the most technical part of the argument. The first problem we face is that
the events entering the definition of�0 are not independent asj varies. We overcome
this difficulty by a decoupling trick which allows to achieve conditional independence
on a large subset of these events.

Lemma 3.2. Let � = (�ij ) be anN × N matrix such that�ij �0 for all i, j and
�jj = 0 for all j . Then there existsJ ⊂ {1, . . . , N} with |J |�N/3 such that for every
j ∈ J we have

∑
i �∈J

�ij � 1

3

N∑
i=1

�ij .
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Proof. This lemma is an immediate consequence of the result of K. Ball on suppression
of matrices presented and proved in[BT] . By Theorem 1.3 in[BT] , there exists a subset
J ⊂ {1, . . . , N} with |J |�N/3 such that

∑
i∈J �ij � 2

3

∑N
i=1 �ij for j ∈ J , which is

just a restatement of the condition in the assertion of the lemma. Note that Theorem
1.3 of [BT] dealt only with sub-stochastic matrices, here we use its homogeneous
reformulation. �

We now return to our main argument. Let� ∈ �0; we start by relating to this� an
N × N matrix � verifying the hypotheses of Lemma3.2. Given j ∈ {1, . . . , N}, we
see from (3.11) that either� ∈ � \�′

j or � ∈ � \�′
j,0. We will use this information

to define thejth column of �. If � ∈ � \�′
j , then looking at the definitions of the

event �′
j and the setD̃′j,p (respectively, (3.8) and (3.4)), we deduce that there exist

xi,j ∈ Fi ∩ BNk2 , for all i �= j , with
∑

i �=j |xi,j |p = 1 andzj ∈ Ẽj ∩ Bm2 such that

〈
G̃

( ∑
i �=j

xi,j

)
, zj

〉
> �.

By changingxi,j to −xi,j if necessary, we may assume that〈G̃xi,j , zj 〉�0 for all
i �= j . We then set, for this particularj, �ij = 〈G̃xi,j , zj 〉 for i �= j and �jj = 0. If
� �∈ �\�′

j , then necessarily� ∈ �\�′
j,0 and we just set�ij = 0 for all i ∈ {1, . . . , N}.

There is no deep reason for this choice; the columns of the second kind (i.e., the null
columns) are neededat this stage only for book-keeping purposes. The reader is
advised to concentrate on the columns of the first kind which are at the focus of the
present decoupling argument.

The matrix � having been defined, we can apply to it Lemma3.2. Let J be the
resulting subset of{1, . . . , N}. We may assume that|J | = �N/3� =: �. The assertion
of the lemma means that for everyj ∈ J such that� ∈ � \�′

j we have

〈
G̃

( ∑
i �∈J

xi,j

)
, zj

〉
��/3

and so, reversing the reasoning that gave thexi,j ’s we obtain

� ∈ � \�′
j,J c ,

where

�′
j,J c :=

{
� ∈ � : P

Ẽj
(D̃J c,p) ⊂ (�/3)Bm2

}
. (3.12)

We recall that for a subsetI ⊂ {1, . . . , N}, D̃I,p is defined analogously to (3.5), but
using the matrixG̃ instead ofG, and thatJ c = {1, . . . , N}\J . Also note that definition
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(3.12) has a form similar to (3.8): indeed,D̃′j,p = D̃I,p where I = {1, . . . , N} \ {j};
additionally,� gets replaced by�/3.

Let J be the family of all subsetsJ ⊂ {1, . . . , N} with |J | = �N/3� = �. The
above argument immediately implies that

⋂
1� j�N

(� \�′
j ) ⊂

⋃
J∈J

⋂
j∈J

(� \�′
j,J c ).

If � ∈ �0 \⋂
1� j�N(� \�′

j ), then some of the columns are “of the second kind”
and, consequently, the sets�′

j,0 enter into the picture. Accordingly, when considering

a general� ∈ �0, we need to replace�′
j and �′

j,J c by their intersections with�′
j,0

in the inclusion above. We then obtain

�0 =
⋂

1� j�N

(
� \ (�′

j ∩�′
j,0)

)
⊂

⋃
J∈J

�J , (3.13)

where forJ ∈ J we set

�J :=
⋂
j∈J

(� \ (�′
j,J c ∩�′

j,0)). (3.14)

Our next objective will be to estimateP(�J ) for a fixedJ. To further streamline the
notation, we shall restrict our attention (as we may, by symmetry) toJ = {1, . . . , �}
and denote, forj = 1, . . . , �,

Ej,p := � \ (�′
j,J c ∩�′

j,0).

Definition (3.14) then becomes

�J =
⋂
j∈J

Ej,p.

We are now in the position to make the key observation of this part of the argument:
for a fixed J ∈ J , the eventsEj,p, for j ∈ J , are conditionally independent with
respect toD̃J c,p: once D̃J c,p is fixed, eachEj,p depends only on the restrictionG|Fj
(in fact, just onG̃|Fj ). Actually, the ensemble{G̃|Fj : j ∈ J } ∪ {D̃J c,p} is independent

since its distinct elements depend on disjoint sets of columns ofG̃, and the columns
themselves are independent. This and the symmetry in the indicesj ∈ J implies that

P(�J | D̃J c,p)=P
( ⋂
j∈J

(Ej,p | D̃J c,p)
)
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=
∏
j∈J

P(Ej,p | D̃J c,p) =
(

P(E1,p | D̃J c,p)
)�
. (3.15)

To estimateP(E1,p | D̃J c,p) first note that, by the definition ofE1,p, this probability
is less than or equal toP(�\�′

1,J c | D̃J c,p)+P(�\�′
1,0 | D̃J c,p). Next, since�′

1,0 is

independent ofD̃J c,p, the second term equals just 1− P(�′
1,0). Further, the set�′

1,0
is the same as in[ST] (where it was denoted by�′1,0, see formula (3.7) in that paper),
and so

P(� \�′
1,0 | D̃J c,p)�e−m/32+ e−9m/32 (3.16)

(see (3.16) in[ST], or use directly Lemma 3.3 from[ST] or Theorem 2.13 from
[DS], both of which describe the behavior of singular numbers of rectangular Gaussian
matrices).

For the term involving� \�′
1,J c the probability estimates are much more delicate

and will require two auxiliary lemmas. Before we state them, we recall the by now
classical concept of functionalM∗(·), defined for a setS ⊂ Rd by

M∗(S) :=
∫
Sd−1

sup
y∈S
〈x, y〉 dx, (3.17)

where the integration is performed with respect to the normalized Lebesgue measure
on Sd−1 (this is 1

2 of what geometers call the mean width ofS; if S is the unit ball
for some norm,M∗(S) is the average of thedual norm overSd−1). We then have

Lemma 3.3. Let d, s be integers with1�d�s and letA = (aij ) be a d × s random
matrix with independentN(0,�2)-distributed Gaussian entries. Further, let a > 0 and
let S ⊂ Rs be a symmetric convex body satisfyingS ⊂ aBs2. Then the random body
AS ⊂ Rd verifies

E
(
M∗(AS)

) = cs�M∗(S),

wherecs =
√

2�( s+1
2 )/�( s2)�

√
s. Moreover, for any t > 0,

P
(
M∗(AS) > cs�M∗(S)+ t

)
�e−dt2/2a2�2

.

Proof. The first assertion is quite standard. We have,

E
(
M∗(AS)

) = E

∫
Sd−1

sup
x∈S
〈Ax, y〉 dy =

∫
Sd−1

E sup
x∈S
〈x,A∗y〉 dy.
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Since, for anyy ∈ Rd , A∗y is distributed as�|y| times the standard Gaussian vector
in Rs , the integrandE supx∈S 〈x,A∗y〉 does not depend ony ∈ Sd−1 and is equal to
the appropriate (independent ofS) multiple of the spherical mean. The value of thecs
may be obtained, e.g., by calculating the Gaussian average forS = Ss−1.

For the second assertion, we show first that the functionT→f (T ) := M∗(T S) is
a/
√
d-Lipschitz with respect to the Hilbert–Schmidt norm‖·‖HS. Indeed, directly from

definition (3.17) we have

f (T1)− f (T2)=
∫
Sd−1

sup
x∈S
〈T1x, y〉 dy −

∫
Sd−1

sup
x∈S
〈T2x, y〉 dy

�
∫
Sd−1

sup
x∈S
〈(T1− T2)x, y〉 dy

�
∫
Sd−1

a|(T1− T2)
∗y| dy

�a

(∫
Sd−1

|(T1− T2)
∗y|2dy

)1/2

=(a/√d)‖(T1− T2)
∗‖HS = (a/

√
d)‖T1− T2‖HS.

The Gaussian isoperimetric inequality (see e.g.,[L, (2.35)] or [LT, � 1.1]) implies now
that

P
(
M∗(AS) > E

(
M∗(AS)

)+ t
)
�e−dt2/2a2�2

,

which shows that the second assertion of the lemma follows from the first one.�

The second lemma describes the behavior of the diameter of a random rankd
projection (or the image under a Gaussian map) of a subset ofRs . Let d, s be integers
with 1�d�s and letGs,d be the Grassmann manifold ofd-dimensional subspaces of
Rs endowed with the normalized Haar measure.

Lemma 3.4. Let a > 0 and let S ⊂ Rs verify S ⊂ aBs2. Then, for any t > 0, the set{
H ∈ Gs,d : PH (S) ⊂

(
a
√
d/s +M∗(S)+ t

)
Bs2

}
has measure�1−exp(−t2s/2a2+1).

Similarly, replacing PH by a d × s Gaussian matrix A with independentN(0,1/s)
entries, we obtain a lower bound on probability of the form1− exp(−t2s/2a2).

The phenomenon discussed in the lemma is quite well known, at least if we do
not care about the specific values of numerical constants (which are not essential for
our argument) and precise estimates on probabilities. It is sometimes refereed to as
the “standard shrinking” of the diameter of a set, and it is implicit, for example, in
probabilistic proofs of the Dvoretzky theorem, see[M1,MS1]. A more explicit statement
can be found in[M4] , and the present version was proved in[ST].
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We now return to the main line of our argument. Observe first that for 1< p�2
one has

M∗ (
convp(Fj ∩ BNk2 : 1�j�N)

)
= M∗(�Np (�k2))�CpN

1/q−1/2, (3.18)

whereq = p/(p − 1) and 1�Cp�C
√
q, whereC > 0 is an absolute constant. This

is likely known, and certainly follows by standard calculations; e.g., by passing to
the average of the�Nq (�

k
2)-norm (dual to the�Np (�

k
2)-norm; cf. the comments following

(3.17)), expressing it in terms of the Gaussian average and then majorizing the latter
via the qth moment, which in turn may be explicitly computed.

Estimate (3.18) has two consequences for the setDp (defined in (3.3)). Firstly, the
Gaussian part of Lemma3.4 implies that, with our normalization ofG, the diameter
of Dp is typically comparable to 1. More precisely, consider the exceptional set

�1 := {� : Dp �⊂ 2Bn2 }. (3.19)

Then, as long asM∗(�Np (�k2))�(n/(4Nk))1/2, we can apply Lemma3.4 to the n ×
Nk matrix A = (n/(Nk))1/2G and t = 1

2(n/(Nk))
1/2 to obtain P(�1)� exp(−n/8)

(note thata = 1 in this case). On the other hand, by (3.18), the needed estimate on
M∗(�Np (�k2)) is satisfied whenever

n�4C2
pN

2/qk, (3.20)

which will be ensured by our final choice ofN and the conditions that will be imposed
on the dimensions involved (cf. the paragraph following (3.26)).

Secondly, by Lemma3.3, we haveE
(
M∗(Dp)

) ≤ Cp
√
k/nN1/q . (Recall thatG is

an n × Nk Gaussian matrix with�2 = 1/n.) Thus, by the second part of the lemma,
our second exceptional set

�̄
1 := {� : M∗(Dp) > 2Cp

√
k/nN1/q} (3.21)

satisfiesP(�̄
1
)� exp(−C2

pknN
2/q/2)� exp(−n/2) (remember thatCp�1).

Now recall thatQ : Rn → Rm is the canonical projection on the firstm coordinates.
Since D̃p = QDp, it follows that for � �∈ �1 we have

D̃J c,p ⊂ D̃p ⊂ 2Bm2 . (3.22)

Further, it is a general fact (shown by passing to Gaussian averages) that, for any
S ⊂ Rn, cmM∗(QS)�cnM

∗(S), were cm and cn are constants from Lemma3.3, and
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cn/cm�(2/
√

	)
√
n/m. Thus, for� �∈ �̄

1
we have

M∗(D̃J c,p)�M∗(D̃p)�
2√
	

√
n

m
· 2Cp

√
k

n
N1/q = Cp

4√
	

√
k

m
N1/q . (3.23)

We now return to our current main task, which is to analyze the set�\�′
1,J c . Since

we are working with conditional probabilities, we need to introduce another exceptional
set which isD̃J c,p-measurable

�′ :=
{
� : D̃J c,p �⊂ 2Bm2 or M∗(D̃J c,p) > Cp(4/

√
	)

√
k/mN1/q

}
. (3.24)

It follows directly from (3.22) and (3.23) that �′ ⊂ �1 ∪ �̄
1
. We emphasize that�′

depends in fact onJ, but J is fixed at this stage of the argument. Moreover, the sets

�′ corresponding to differentJ’s are subsets of a small common superset�1 ∪ �̄
1
,

which is additionally independent ofQ.
The definition of the set�′

1,J c (cf. (3.12)) involves the diameter of a random rankk

projection ofD̃J c,p (note that, by the rotational invariance of the Gaussian measure,Ẽ1

is distributed uniformly inGm,k, and is independent of̃DJc,p). Moreover, if � �∈ �′,
we control the diameter andM∗ of the setS = D̃J c,p, and so we are exactly in a
position to apply Lemma3.4. Specifically, we uset = �/6, a = 2 and assume that

Cp(4/
√

	)
√
k/mN1/q��/12 (3.25)

(which impliesa
√
k/m = 2

√
k/m��/12) to obtain

P
(
� \�′

1,J c |D̃J c,p

)
�e−�2m/(8·62)+1. (3.26)

For the record, we note that (3.25) implies

4C2
pN

2/qk�4(�/12)2m�m�n

and thus condition (3.20) that appeared in connection with the measure estimate for
�1 is automatically satisfied.

Substituting (3.26) combined with estimate (3.16) for the measure of� \�′
1,0 into

(3.15) we deduce that, outside of�′,

P(�J | DJc,p)�
(
e−�2m/(8·62)+1+ e−m/32+ e−9m/32

)�

�(2e)�e−�2m�/(8·62).
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Averaging over� \�′ (and using�′ ⊂ �1 ∪ �̄
1
) yields

P
(
�J \ (�1 ∪ �̄

1
)
)

�P
(
�J \�′) �P

(
�J | � \�′) �(2e)�e−�2m�/(8·62).

Since |J | = (
N
�
) and

⋃
J∈J �J ⊃ �0 (cf. (3.13)), it follows that

P
(
�0 \ (�1 ∪ �̄

1
)
)

�P


 ⋃
J∈J

�J \ (�1 ∪ �̄
1
)


 �

(
N

�

)
(2e)�e−�2m�/(8·62). (3.27)

Consequently,

P(�0)�P(�1)+ P(�̄
1
)+ P

(
�0 \ (�1 ∪ �̄

1
)
)

�e−n/8+ e−n/2+
(
N

�

)
(2e)�e−�2m�/(8·62). (3.28)

This ends Step I of the proof. To summarize: we have shown that the exceptional set
�0 is of exponentially small measure provided (3.25) holds, and that if, additionally,
(3.10) is satisfied, then, for� �∈ �0, the quotient spacẽXp (obtained fromXp(�) via
the quotient mapQ) contains a well-complemented subspace well isomorphic toW.
To be precise, to arrive at such a conclusion requires optimizing estimate (3.28) over
allowable choices of the parametersN,�; however, we skip it for the moment since
an even more subtle optimization will be performed in Steps II and III.

Steps II and III are very similar as in[ST, Proposition 3.1], so we shall outline the
main points only, referring the interested reader to[ST] for details.
Step II: The perturbation argument.Let Q be an arbitrary rank m orthogonal

projection on Rn. Denote by�Q the set given by formally the same formulae as
in (3.11) by the Gaussian operator̃G = QG for this particularQ. By rotational
invariance, all the properties we derived for�0 hold also for�Q. Throughout Step II,
all references to objects defined in Step I will implicitly assume that we are dealing
with this particularQ.

Consider the exceptional set�1 defined in (3.19), and observe that if� �∈ �1, then

D′j,p ⊂ Dp ⊂ 2Bn2 (3.29)

for every j = 1, . . . , N . This is an analogue of (3.26) of[ST] and the basis for all the
estimates that follow.

Let � �∈ �1 ∪�Q and letQ′ be any rankm orthogonal projection such that‖Q−
Q′‖�
, where‖ · ‖ is the operator norm with respect to the Euclidean norm| · | and

 > 0 will be specified later. Then, for somej, conditions just slightly weaker than
those in (3.8) and (3.9) hold with Q replaced byQ′. Namely, there exists 1�j�N

such that, firstly, if
� 1
8

√
m/n then Q′ satisfies inclusions analogous to (3.9) with
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constants1
2 and 2 replaced by14 and 9

4, respectively (cf. (3.28) of[ST]); and, secondly,
if 
1 := 4


√
n/m��/4 thenQ′ satisfies inclusions analogous to (3.8) with � replaced

by 2�. (The former statement is exactly the same as in[ST], and the proof of the latter
uses the above inclusion (3.29) instead of (2.26) of[ST].)

Finally, set 
 := 1/(8
√
n) (as in [ST]); then the condition
� 1

8

√
m/n is trivially

satisfied, while the condition
1��/4 follows from (3.25). So we can now apply the
previous arguments and conclude Step II: if� �∈ �1 ∪�Q, ‖Q−Q′‖�
 and

2�� 1√
k
· 1

4

√
m

n
, (3.30)

then the quotient ofXp corresponding toQ′ contains a 21/q -complemented subspace
21/q -isomorphic toW, namelyQ′Ej . We note that (3.30) is just slightly stronger than
(3.10), and as easy to satisfy.
StepIII: The discretization: a
-net argument. Let Q be a
-net in the set of rank

m orthogonal projections onRn endowed with the distance given by the operator norm.
Recall that such a net can be taken with cardinality|Q|�(C2/
)m(n−m), whereC2 is
a universal constant (see[ST], or directly [S2]). For our choice of
 = 1/(8

√
n), this

does not exceedemn log n, at least for sufficiently largen. As in (3.27) and (3.28), this
implies the measure estimate for our final exceptional set

P
(
�1 ∪

⋃
Q∈Q

�Q
)
�P

(
�1 ∪ �̄

1 ∪
⋃
Q∈Q

(
�Q \ (�1 ∪ �̄

1
)
))

(3.31)

�e−n/8+ e−n/2+ emn logn
(
N

�

)
(2e)�e−�2m�/32.

The first two terms are negligible. Recall that� = �N/3��N/3, and so the last term
in (3.31) is less than or equal toemn log n−�2mN/128.

In conclusion, ifk, �, m, n andN satisfy

C
√
q (4/

√
	)

√
k/mN1/q��/12, 256mn log n��2mN, (3.32)

whereC > 0 is the absolute constant related toCp (see (3.25) and (3.18)), then the
set � \ (�1 ∪⋃

Q∈Q �Q) has positive measure (in fact, very close to 1 for largen).
If, additionally, (3.30) is satisfied, then any� from this set induces ann-dimensional
spaceXp whose all m-dimensional quotients contain a 21/q -isomorphic and 21/q -
complemented copy ofW (and similarly with 1+ ε in place of 21/q if (3.30) holds
with an additionalε factor on the right-hand side). Then the assertion of Theorem2.1
holds for that particular value ofm.
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It remains to ensure that conditions (3.32) and (3.30) are consistent and to discuss
the resulting restrictions on the dimensions. It is most convenient to let� := 1

8

√
m/(nk)

so that (3.30) holds. Then the conditions in (3.32) lead to

k�c′ min

{
m√

qnN1/q ,
mN

n2 log n

}
, (3.33)

wherec′ ∈ (0,1) is a universal constant. Optimizing overN leads to

k� c1m

q1/2 n(4+q)/(2+2q) (logn)1/(1+q)

which, for m = m0, is just a rephrasing of the hypothesis on dimV = dim W from
Theorem2.1, and holds in the entire rangem0�m�n if it holds for m0. It follows
that, under our hypothesis, the above construction can be implemented for eachm ver-
ifying m0�m�n. Moreover, since the estimates on the probabilities of the exceptional
sets corresponding to different values ofm are exponential in−n (as shown above),
the sum of the probabilities involved is small. Consequently, the construction can be
implementedsimultaneouslyfor all suchm with the resulting space satisfying the full
assertion of Theorem2.1 with probability close to 1.

Finally, we point out that, as it was already alluded to earlier at some crucial points
of the argument, the 1+ ε-version of the statement will follow once our parameters
satisfy (3.32) and the condition analogous to (3.30), with an extraε on the right-hand
side. With the choice of� := (ε/8)

√
m/(nk), this leads to a version of (3.33), which—

after optimizing overN—gives the same bound fork as above, but with the constant
c1 depending onε rather than being universal. The rest of the argument is the same.

�

4. The global saturation

Proof of Theorem 2.2. Let W be ak-dimensional normed space. IdentifyW with Rk

in such a way that(1/
√
k)Bk2 ⊂ BW ⊂ Bk2.

We use an analogous notation for convex bodies as in the proof of Theorem2.1
(but without the subscriptp). In particular, we setZ = �N1 (W) and we recall that
G = G(�) denotes an × Nk random matrix with independentN(0,1/n)-distributed
Gaussian entries. We let

K = BX(�) := G(�)(BZ) ⊂ Rn.

Recall that forj = 1, . . . , N , Fj is the k-dimensional coordinate subspace ofRNk

corresponding to thejth consecutive copy ofW in Z; Ej := G(Fj ), Kj := G(Fj ∩BZ)
andK ′j := G(span[Fi : i �= j ] ∩ BZ) = conv(Ki : i �= j); next, Dj := G(Fj ∩ BNk2 )
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andD′j := conv
(
Dj : i �= j

)
. (The notationDj has been already used in the proof of

Theorem2.1, and the “p-convex” analogue ofD′j , namelyD′j,p, was defined in (3.4).)
The general structure of the argument is the same as in Theorem2.1: the proof con-

sists of three steps dealing, respectively, with analysis of a single rotation, perturbation
of a given rotation and discretization (for a smoother narrative, here and in what follows
we refer to elements ofO(n)—even those whose determinant is not 1—as rotations).
We will refer extensively to arguments in Section3 and in [ST]. As in Section3, we
shall occasionally assume, as we may, thatn is large.
Step I: Probability estimates for a fixed rotation.For the time being we fixu :

Rn → Rn with u ∈ O(n). We shall show that, outside of an exceptional set of�’s
of a small measure, there is a section ofK + u(K) which is 3-isomorphic toBW and
3-complemented (or, more precisely, that the identity onW 3-factors through the space
(Rn,K + u(K)).

We shall adopt the following description of the bodyK + u(K). Let BZ ⊕∞ BZ
be the unit ball ofZ ⊕∞ Z (i.e., RNk ⊕ RNk with the �∞-norm on the direct sum).
Next, consider the Gaussian operatorG ⊕ G : RNk ⊕ RNk → Rn ⊕ Rn, acting in
the canonical way on the coordinates. Further, define[Id, u] : Rn ⊕ Rn → Rn by
[Id, u](x1, x2) = x1 + ux2, for (x1, x2) ∈ Rn ⊕ Rn. Clearly, we haveK + u(K) =
[Id, u](G⊕G)(BZ ⊕∞ BZ). Instead of[Id, u] we can equally well use[u1, u2], where
u1, u2 ∈ O(n) are two rotations.

The difference between this setup and the scheme of[ST] is that in the latter one
considersQG′′(BZ ⊕1BZ), whereG′′ is a 2n× 2Nk Gaussian matrix andQ a rankn
orthogonal projection onR2n. Both schemes yield quotients of random quotients of
Z ⊕ Z, with G ⊕ G or G′′ being the random part and[u1, u2] or Q the nonrandom
part. For the latter one may as well “rescale” the dimensions and considerQ′G(BZ),
whereQ′ is a (nonrandom) rank#n/2$ projection. The setting in Section3 is identical,
except that we considerBZp ⊕p BZp instead ofBZ ⊕1 BZ.

To define exceptional sets we identify conditions similar to those in Section3 (or in
Section 3 of[ST]). Recall that, forE ⊂ Rn, we denote byPE the orthogonal projection
onto E. Now, for j ∈ {1, . . . , N} and for 0< � < 1, (a constant to be specified later),
we consider the set

�′j :=
{
� ∈ � : PEj (D′j + u(D′j )) ⊂ �Bn2

}
. (4.1)

These sets are analogous to�′
j in (3.8), and they will replace these latter sets in all

subsequent definitions. A similar proof as for (3.26) in Section3, or (3.23) of [ST],
shows that

P(�′j )�1− exp(−c1�2n), (4.2)

as long as

��C′
√

max{k, log N}/n (4.3)
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for appropriate numerical constantsc1 > 0 andC′�1. The argument is again based
on Lemma3.4: sinceEj is independent ofD′j , we may as well consider it fixed, and
then we are exactly in the setting of the Gaussian part of the lemma. We just need to
majorizeM∗(BZ) (or, more precisely, just of the unit ball of�N−1

1 (�k2) since the�k2-
factor corresponding toFj does not enter intoD′j ), which isO(

√
max{k, log N}/n) by

reasons similar to—but simpler than—those that led to (3.20) of[ST] (the calculations
sketched in the paragraph containing (3.18) give a slightly larger majorant, which would
also suffice for our purposes).

Next, for j = 1, . . . , N we let

�′j,0 :=
{
� ∈ � : 1

2 (B
n
2 ∩ Ej) ⊂ Dj

}
. (4.4)

Since the condition in (4.4) involves only one of the two inclusions appearing in (3.9),
the same argument that led to (3.16) (see also (3.16) of[ST]) gives

P(�′j,0)�1− exp(−n/32). (4.5)

While in Theorem2.1 and in [ST] properties analogous to those implicit in the defi-
nitions of the sets�′j , �′j,0 were sufficient to ensure that the quotientQ(K) contained
a well-complemented subspace well isomorphic toW, this is not the case in the present
context and we need to introduce additional invariants.

Fix �0 > 0 to be specified later (it will be of the order of 1/k). Let � := tr (Id−u)/n,
and assume without loss of generality that 0���1 (replacing, if necessary,u by −u).
The proof now splits into two cases depending on whether���0 or � < �0. To clarify
the structure of the argument let us mention that, among the sets�′j and �′j,0 defined
above, Case 1◦ will use only the former ones, while Case 2◦ will involve both.
Case1◦: Let ���0.

Lemma 4.1. Let A be ann×k random matrix with independentN(0,1/n)-distributed
Gaussian entries. Letu ∈ O(n) with tr u�0 and set� = tr (Id−u)/n (∈ [0,1]). Then,
with probability greater than or equal to1−exp(−c�n+c−1k log(2/�)), the following
holds for all �, � ∈ Rk

∣∣A�+ uA�
∣∣ �c�1/2

(
|�|2+ |�|2

)1/2
�(c/2)�1/2

(
|A�|2+ |uA�|2

)1/2
, (4.6)

wherec > 0 is a universal constant.

We postpone the proof of the lemma until the end of the section and continue the
main line of the argument. Forj = 1, . . . , N we let

Hj = Ej + u(Ej ).
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We shall now use Lemma4.1 for the n× k matrix A = Aj formed by thek columns
of the matrixG that spanEj . Denoting by�j,0 the subset of� on which inequalities
(4.6) holds, we have

P(�j,0)�1− exp(−c�n+ c−1k log(1/�))

�1− exp(−c�0n+ c−1k log(1/�0)). (4.7)

Consider the following auxiliary set, closely related to�j,0,

�j :=
{
� ∈ � : c�1/2(Bn2 ∩Hj) ⊂ Dj + u(Dj ) and dimHj = 2k

}
. (4.8)

An elementary argument shows that the conditions in (4.8) are equivalent to
“
∣∣A�+ uA�

∣∣ �c�1/2 max{|�|, |�|} for all �, � ∈ Rk.” Since this is weaker than the
first inequality in (4.6), it follows that �j,0 ⊂ �j .

Our next objective is to show that on�j,0

|PHj z|�(2/c)�−1/2
(
|PEj z|2+ |Pu(Ej )z|2

)1/2
(4.9)

for every z ∈ Rn.
Note that sinceEj andu(Ej ) are both subspaces ofHj , it is sufficient to assume that

z ∈ Hj . Consider the operatorT : Hj → Ej⊕2u(Ej ) given byT (z) = (PEj z, Pu(Ej )z)

for z ∈ Hj . Then inequality (4.9) is equivalent to‖T −1‖�(2/c)�−1/2. On the other
hand, the adjoint operatorT ∗ : Ej ⊕2 u(Ej ) → Hj is given by T ∗(x, y) = x + y

for x ∈ Ej and y ∈ u(Ej ). Comparing the first and the third terms of (4.6) yields
‖T −1‖ = ‖(T ∗)−1‖�(2/c)�−1/2, as required.

Finally, consider another good set

�′′j :=
{
� ∈ � : Pu(Ej )(D′j + u(D′j )) ⊂ �Bn2

}
. (4.10)

Note that sinceu is orthogonal, we clearly havePu(Ej ) = uPEj u
∗ (this will be used

more than once). Comparing (4.10) with the definition of�′j (see (4.1)), we deduce
from (4.2) that

P(�′′j ) = P(�′j )�1− exp(−c1�2n). (4.11)

We are now ready to complete the analysis specific to Case 1◦. Let � ∈ �j,0∩�′j∩�′′j .
Then, combining (4.9) with the definitions of�′j and�′′j (i.e., with (4.1) and (4.10)) we
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see that, for allz ∈ D′j + u(D′j ),

|PHj z|�(2/c)�−1/2
(
|PEj z|2+ |Pu(Ej )z|2

)1/2
�(2

√
2/c)�−1/2�

or, equivalently,

PHj (D
′
j + u(D′j )) ⊂ (2

√
2/c)�−1/2�Bn2 . (4.12)

As in the previous proofs we will impose a condition on�, namely

(2
√

2/c)�−1/2
0 ��c�1/2

0 /
√
k. (4.13)

Combining this inequality with (4.12) and (4.8), and recalling that�j,0 ⊂ �j and that
�0��, we are led to

PHj (D
′
j + u(D′j )) ⊂ 1/

√
k

(
Dj + u(Dj )

)
.

Finally, recalling the inclusions between theK- and theD-sets, we obtain

PHj (K
′
j + u(K ′j )) ⊂ Kj + u(Kj ).

Consequently, similarly as in the previous proofs (cf. (3.6), or [ST, (3.3)]),

PHj (K + u(K)) ⊂ conv
(
Kj + u(Kj ), PHj (K

′
j + u(K ′j ))

)
⊂ Kj + u(Kj ).

This means thatKj + u(Kj ) is a 1-complemented section ofK + u(K). On the other
hand, let us note that, again by (4.8), dim Hj = 2k, which implies thatKj + u(Kj )

(thought of as a normed space) is isometric toBW ⊕∞ BW , thus showing thatHj ∩
(K + u(K)) is isometric toBW ⊕∞ BW as well.

We recall that the above conclusion was arrived at under the hypothesis� ∈ �j,0 ∩
�′j ∩ �′′j . As j ∈ {1, . . . , N} was arbitrary, we deduce that under the hypothesis of
Case 1◦ and the additional assumptions (4.3) and (4.13), the setK + u(K) admits a
1-complemented section isometric toBW provided that� ∈⋃N

j=1(�j,0 ∩ �′j ∩ �′′j ).
Case2◦: Let � < �0.
In this case the operatoru is close to the identity operator. In particular, since

� = tr (Id−u)/n, we see that the norm

‖ Id−u‖HS =
(
tr (Id−u)(Id−u∗))1/2 = (2(n− tr u))1/2 = (2n�)1/2

is relatively small. To exploit this property we will need another lemma.
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Lemma 4.2. Let A be ann×k random matrix with independentN(0,1/n)-distributed
Gaussian entries. Let T be ann× n matrix, set a := ‖T ‖HS and let  > 0. Then, on a
set of probability larger than or equal to1− exp

(−2n/(2‖T ‖2)+ 2k
)
, the following

holds for all � = (�i ) ∈ Rk

∣∣TA�
∣∣ �2

(
a√
n
+ 

)
|�|. (4.14)

Again, we postpone the proof of the lemma and continue our argument. Fix > 0,
to be specified later. Forj = 1, . . . , N , let

�′′j,0 :=
{
� ∈ � : (Id−u)Dj ⊂ 2(

√
2�+ )Bn2

}
. (4.15)

As was the case with Lemma4.1, we shall apply the lemma to then × k matrix
A = Aj formed by thek columns of the matrixG that spanEj . We will also use
T = Id−u, so that‖T ‖�2. Since, in that case,a/

√
n = √

2�, the inclusion from
(4.15) is equivalent to inequality (4.14) and thus

P(�′′j,0)�1− exp(−2n/8+ 2k). (4.16)

The latter expression will be later made very close to 1 by an appropriate choice of
parameters.

Next we shall show that ifj ∈ {1, . . . , N} and � ∈ �′j ∩ �′j,0 ∩ �′′j,0, then

Kj ⊂ PEj (K + u(K)) ⊂ 3Kj . (4.17)

Clearly, this will imply that the section ofK+u(K) by Ej is 3-isomorphic toKj , which
in turn is isometric toBW ; and additionally, that it is 3-complemented. Consequently,
under the hypothesis of Case 2◦, the assertion of Step I will be shown to hold on the
set

⋃N
j=1(�

′
j,0 ∩ �′′j,0 ∩ �′j ).

To show (4.17), we first point out that ifB ⊂ Rn is any symmetric convex body,
thenB + u(B) ⊂ 2B + (Id−u)(B). We then argue as follows:

K + u(K)⊂Kj +K ′j + u(Kj )+ u(K ′j )

⊂Kj +D′j + u(Kj )+ u(D′j )

⊂ 2Kj + (Id−u)Kj +
(
D′j + u(D′j )

)

⊂ 2Kj + 2(
√

2�+ )Bn2 +
(
D′j + u(D′j )

)
,
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where the last inclusion is a consequence of (4.15). Accordingly

PEj (K + u(K))⊂ 2Kj + PEj

(
D′j + u(D′j )

)
+ 2

(√
2�+ 

)
Bn2 ∩ Ej

⊂ 2Kj +
(
�+ 2

√
2�+ 2

)
(Bn2 ∩ Ej),

with the last inclusion following from definition (4.1) of set�′j . By definition (4.4) of

�′j,0, the second term on the right is contained in 2(�+ 2
√

2�+ 2)Dj . Since� < �0,
it follows that whenever

2
(
�+ 2

√
2�0 + 2

)
�1/

√
k, (4.18)

then

PEj (K + u(K)) ⊂ 2Kj +
(
1/
√
k
)
Dj ⊂ 3Kj .

We thus obtained the right-hand side inclusion in (4.17); the left-hand side inclusion
is trivial. This ends the analysis specific to Case 2◦.

Now is the time to choose�0 and to satisfy our restrictions while yielding the opti-
mal concentration inboth cases under consideration. Conditions (4.3), (4.13) and (4.18)
can be summarized asC′

√
max{k, log N}/n���c′�0/

√
k and max

{√
�0, 

}
�c′/

√
k,

for appropriate numerical constantsc′ > 0 andC′�1. We choose�0,  and� so that

�1/3 = √�0 =  = c′/
√
k. (4.19)

This choice takes care of all the restrictions except for the lower bound on�, which
can be now rephrased as

k�c min{n1/4, (n/ log N)1/3} (4.20)

for an appropriate numerical constantc > 0.
We shall now analyze the estimates on the probabilities of the good sets contained

in (4.16), (4.7) and (4.11). If k2/n is sufficiently small, a condition which is weaker
than (4.20), then the term 2k in the exponent in (4.16) is of smaller order than the first
term, and so it does not affect the form of the estimate. The situation is slightly more
complicated in the case of (4.7): to absorb the second term in the exponent we need
to know thatk log(1/�0) is sufficiently smaller than�0n; given that�0 = O(1/k) (cf.
(4.19)), this is equivalent to

k�c′′
√

n

1+ log n
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for an appropriate numerical constantc′′ > 0. Again, this is a condition weaker than
(4.20), at least for sufficiently largen. The probability estimates in question are thus,
respectively, of the form 1− exp(−c32n), 1− exp(−c2�0n) and 1− exp(−c1�2n), for
appropriate universal constantsc1, c2, c3 > 0. Substituting the values for�0,  and �
defined by (4.19) we get, under hypothesis (4.20), the following minoration

min{P(�′j ),P(�′′j ),P(�j,0),P(�′′j,0),P(�′j,0)}�1− exp(−c0n/k
3), (4.21)

again for an appropriate numerical constantc0 > 0. We point out that the argument
above treated just the first four terms under the minimum; forP(�′j,0) we have the
stronger estimate (4.5), which does not require any additional assumptions.

We are now ready to conclude Step I. Consider the exceptional set defined by one
of two different formulae, depending on whether we are in Case 1◦ or Case 2◦. In
Case 1◦ we set

�0 := � \
N⋃
j=1

(�j,0 ∩ �′j ∩ �′′j )

(see (4.6) and the paragraph following it, (4.1), (4.10) for the definitions). In Case 2◦
we let

�0 := � \
N⋃
j=1

(�′j,0 ∩ �′′j,0 ∩ �′j ),

(see (4.4), (4.15) and (4.1) for the definitions). The argument above shows that for
� �∈ �0 there is a section ofK + u(K) 3-isomorphic toBW and 3-complemented.

It follows readily from what we have shown up to now that the sets�0 are expo-
nentially small. For example, by (4.21),

P
(
� \ (�j,0 ∩ �′j ∩ �′′j )

)
�3 exp(−c0n/k

3) (4.22)

for any j ∈ {1, . . . , N}, and identical estimates hold for exceptional sets relevant to
Case 2◦. However, to finalize Step I we need to majorize the probability of�0 much
more efficiently. To this end we argue in the same way as in Section 3 of[ST]. We
could also follow the argument from Section3 above, but in the present situation,
when we are dealing with the convex hulls of sets—such asKi or Dj—rather then
the p-convex hulls of the same sets, withp > 1, the latter option would only add
unnecessary complications. However, for reader’s convenience, we will also include a
few comments pertaining to the proof of Theorem2.1.

We first employ the “decoupling” procedure based on Lemma 3.2 in[ST] (which is
a special case of Lemma3.2 above for a “0-1” matrixA). More precisely, we do need
and do have estimates on conditional probabilities which are obtained in essentially the
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same way as there (and are also parallel to the estimates for�0 earlier in this paper).
Essential use is also made of the exceptional set

�1 := {� : D �⊂ 2Bn2 }

(defined in (3.17) of[ST] and analogous to�1 in Section3) and the precise statements
involve �1 and sets related to it. Again, the key point is that the linear subspaceEj
(resp.Ej+u(Ej )) and the sets with which it is being intersected (or which are projected
onto it) depend on disjoint blocks of columns ofG and hence are independent. The
decoupling procedure and the estimate from (4.21) lead to

P(�0)�Ne−9n/32+
(
N

�

) (
3e−c0n/k

3
)�

�Ne−9n/32+ e−c4N/k
3
, (4.23)

where� = �N/3� (cf. (4.22)). This is almost identical to (3.25) of[ST] (and analogous
to (3.28) above). Let us emphasize that the set�1, responsible for the first term of the
estimate, is independent onu, and therefore, when (4.23) is combined with the
-net
argument in Step III below, only the second term will have to be multiplied by the
cardinality of the net.
Step II: Stability under small perturbations of the rotation u.We will now prove

that there exists (a not too small)
 > 0 such that ifu ∈ O(n) and � �∈ �0 (where
�0 is defined starting with this particularu) and if u′ ∈ O(n) with ‖u− u′‖�
, then
u′ and� satisfy essentially the same conditions as those defining�0. As in [ST] (and
analogously as in Section3 above), this will be shown under an additional assumption,
namely that� �∈ �1 (the definition of �1 was recalled above). It will then follow
that, for anyu′ as above, the random bodyK corresponding to any� �∈ �1 ∪ �0

will have the property thatK + u′(K) has a section that is 3-isomorphic toBW and
3-complemented provided the parameters involved in the construction satisfy conditions
differing from those of Step I (which, we recall, were ultimately reduced just to (4.20))
only by values of the numerical constants.

We start by pointing out that condition (4.4) does not involveu and so it is trivially
stable. Next, we consider (4.1) which, while nontrivial, is easy to handle. We have

u′(D′j ) ⊂ u(D′j )+ 2
Bn2

(because� �∈ �1) and so if
��/2, we get (4.1) for u′ in place ofu, at the cost of
replacing� by 2� on the right-hand side of the inequality.

Condition (4.15) is also simple: if� �∈ �1 and
�, and if (4.15) is satisfied foru,
then it is clearly satisfied foru′ with the factor 2 on the right-hand side replaced by
3. (Note that this argument works for a generalu, even though condition (4.15) enters
the proof only in Case 2◦.)

Next we assume that we are in Case 1◦ and discuss the stability of�j,0, defined
by inequality (4.6) (where the matrixA = Aj has been described in the paragraph
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following Lemma4.1). We clearly have

∣∣Aj�+ u′Aj�
∣∣� ∣∣Aj�+ uAj�

∣∣− ‖u− u′‖ ∣∣Aj�∣∣
�c�1/2

(
|�|2+ |�|2

)1/2− 2
|�|.

So if 
�c�1/2/4, we get a version of the first inequality in (4.6) with u′ in place ofu
and c on the right-hand side replaced byc/2. The second inequality follows similarly.
Since (given that we are in Case 1◦) ���0, we see that the condition on
 is satisfied
when 
�c�1/2

0 /4.
It remains to check the stability of (4.10). SetR = u′ − u, then‖R‖�
 and, using

Pu′(Ej ) = u′PEj u′
∗, we obtain

Pu′(Ej )(D
′
j + u′(D′j ))= u′PEj (u′∗D′j +D′j )

= (u+ R)PEj ((u
∗ + R∗)D′j +D′j )

⊂ (u+ R)PEj

(
(u∗D′j +D′j )+ 2
Bn2

)

⊂ uPEj (u∗D′j +D′j )+ 2
uPEj B
n
2 + RPEj (4B

n
2)

⊂ uPEj (u∗D′j +D′j )+ 6
Bn2 .

SinceuPEj u
∗ = Pu(Ej ), insisting that
��/6 will guarantee thatu′ satisfies the inclu-

sion from (4.10) with � replaced by 2�.
Finally, let us remark that the distinction between Cases 1◦ and 2◦ is likewise

essentially stable under small perturbations inu: the parameter� is 1-Lipschitz with
respect to the operator norm and so if
 is less than1

2 of the threshold value�0 = c′2/k,
then the inequalities defining Case 1◦ and 2◦ will have to be modified at most by factor
2 when passing fromu to u′ (or vice versa).

Comparing the obtained conditions on
 we see that the most restrictive is
��/6=
c′′′k−3/2. Since, by (4.20) (and, ultimately, by the hypothesis of the theorem),k is at
most of the order ofn1/4, the appropriate choice of
 = O(n−3/8), will cover the entire
range of possible values ofk. This supplies the value of
 that needs to be used in the
discretization (a
-net argument) to be implemented in Step III below.
Step III: A discretization argument.The procedure is fully parallel to that of Sec-

tion 3: we introduce a
-net of O(n), say U , and then combine the exceptional sets
corresponding to the elements ofU . For the argument to work, it will be sufficient that
the cardinality ofU multiplied by the probability of the exceptional set corresponding
to a particular rotationu (i.e., the second term at the right-hand side of (4.23)) is
small. As is well known (see, e.g.,[S1,S2]), O(n) admits, for any
 > 0, a 
-net (in
the operator norm) of cardinality not exceeding(C/
)dim O(n), whereC is a universal
constant. Our choice of
 = O(1/n�) (where� = 3

8, see the last paragraph of Step II)



S.J. Szarek, N. Tomczak-Jaegermann / Journal of Functional Analysis 221 (2005) 407–438435

leads to the estimate

log |U |�O(�n2(1+ log n)).

For the probability of combined exceptional sets to be small it will thus suffice that,
for an appropriately chosenc5 > 0,

�n2(1+ log n)�c5N/k
3

(cf. (4.23)). Since, as in the argument at the end of Step II, we may assume thatk is
at most of the order ofn1/4, the condition above may be satisfied in the entire range
of possible values ofk with N = O(n11/4(1+ log n)). Since such a choice implies
that we have then logN = O(log n), the restrictions given by (4.20)) reduce, at least
for large n, to k�cn1/4—exactly the hypothesis of the theorem.�

To complete the proof of Theorem2.2 it remains to prove Lemmas4.1 and 4.2.
The arguments are fairly straightforward applications of the Gaussian isoperimetric
inequality, or Gaussian concentration, again in the form given, e.g., in[L, Formula
(2.35)].

Proof of Lemma 4.1. Fix �, � ∈ Rk with |�|2+|�|2 = 1 and considerf := ∣∣A�+ uA�
∣∣

as a function of the argumentA. Then f is
√

2-Lipschitz with respect to the Hilbert–
Schmidt norm. Therefore, Gaussian concentration inequalities imply that the function
f must be strongly concentrated around its expected valueEf . Specifically, we get for
t > 0

P(|f − Ef | > t) < 2 exp(−nt2/4). (4.24)

To determine the magnitude ofEf , we shall first calculate the second moment.

Ef 2=E
∣∣A�+ uA�

∣∣2
=E

∣∣A�
∣∣2+ E

∣∣uA�
∣∣2+ 2E〈A�, uA�〉

=|�|2+ |�|2+ 2〈�, �〉 tr u

n
,

the last equality following, for example, by direct calculation in coordinates. The
assumption|�|2 + |�|2 = 1 implies |〈�, �〉|� 1

2 and so, recalling our notation� =
tr (Id−u)/n = 1− tr u/n, we deduce that

��Ef 2�2− �.

Since, by the Khinchine–Kahane inequality, theL2- and theL1-norm of a Gaussian
vector differ at most by factor

√
	/2 (see[LO] for an argument which gives the optimal
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value of the constant), it follows that

ε1 :=
√

2/	
√

��Ef �
√

2− �.

Thus choosingt = ε1/3 in (4.24) yields

P
(
2ε1/3� |A�+ uA�|�√2− �+ ε1/3

)
�1− 2e−n�/(18	). (4.25)

The estimates on|A� + uA�| and the associated probabilities extend appropriately by
homogeneity to any�, � ∈ Rk. The next step is now standard: we choose a proper
net in the set{�, � ∈ Rk : |�|2 + |�|2 = 1} and if the estimates on|A� + uA�| hold
simultaneously for all elements of that net, it will follow that

1
3

√
2/	

√
� (|�|2+ |�|2)1/2� |A�+ uA�|�2(|�|2+ |�|2)1/2

for all �, � ∈ Rk. The left-hand side inequality above yields then the first inequality in
(4.6). The right-hand side inequality is a statement formally stronger than the second
inequality in (4.6).

To conclude the argument we just need to assure the proper resolution of the net
and to check its cardinality. Generally, if a linear map is bounded from above byB
on an ε-net of the sphere, it is bounded on the entire sphere byB ′ = B/(1− ε). If
it is additionally bounded on the net from below byb, then it is bounded from below
on the entire sphere byb′ = b − B ′ε. If we chooseε = ε1/6, then the resultingB ′
is < 2, and sob′ > 2ε1/3− 2ε = ε1/3, as required. Finally, theε-net can be chosen
so that its cardinality is�(1+ 2/ε)2k = (1+ √18	/�)2k, and so the logarithm of
the cardinality isO(k log(2/�)). Combining this with (4.25) we obtain an estimate on
probability which is exactly of the type asserted in Lemma4.1. �

Proof of Lemma 4.2. The argument here is similar to that of Lemma4.1 but sub-
stantially simpler since we need only an upper estimate. First, we may assume without
loss of generality thatT is diagonal. A direct calculation shows then thatE

∣∣TA�
∣∣2 =

(‖T ‖2
HS/n) |�|2. Thus, if |�| = 1, thenE

∣∣TA�
∣∣ �a/

√
n, while the Lipschitz constant

of |TA�| (in argumentA, with respect to the Hilbert–Schmidt norm) is�‖T ‖. It is
now enough to choose a12-net on the sphereSk−1 and argue as earlier, but paying
attention to upper estimates only.�

Acknowledgments

Most of this research was performed while the second named author visited Université
Marne-la-Vallée and Université Paris 6 in the spring of 2002 and in the spring of



S.J. Szarek, N. Tomczak-Jaegermann / Journal of Functional Analysis 221 (2005) 407–438437

2003, and while both authors were attending the Thematic Programme in Asymptotic
Geometric Analysis at the Pacific Institute of the Mathematical Sciences in Vancouver in
the summer 2002. Thanks are due to these institutions for their support and hospitality.

References

[B] J. Bourgain, Subspaces ofL∞
N

, arithmetical diameter and Sidon sets, in: Probability in Banach
Spaces V (Medford MA, 1984), Lecture Notes in Mathematics, vol. 1153, Springer, Berlin, 1985,
pp. 96–127.

[BT] J. Bourgain, L. Tzafriri, Restricted invertibility of matrices and applications, Analysis at Urbana,
vol. II (Urbana, IL, 1986–1987), London Mathematical Society, Lecture Note Series, vol. 138,
Cambridge University Press, Cambridge, 1989, pp. 61–107.

[DS] K.R. Davidson, S.J. Szarek, Local operator theory, random matrices and Banach spaces, in: W.B.
Johnson, J. Lindenstrauss (Eds.), Handbook on the Geometry of Banach Spaces, vol. 1, Elsevier
Science, 2001, pp. 317–366. Addenda and Corrigenda. vol. 2, 2003, pp. 1819–1820.

[G] E.D. Gluskin, The diameter of Minkowski compactum roughly equals ton, Funct. Anal. Appl.
15 (1981) 57–58 (English Translation).

[K] B.S. Kashin, The widths of certain finite-dimensional sets and classes of smooth functions, Izv.
Akad. Nauk SSSR Ser. Mat. 41 (1977) 334–351 (Russian).

[LO] R. Latała, K. Oleszkiewicz, Gaussian measures of dilatations of convex symmetric sets, Ann.
Probab. 27 (4) (1999) 1922–1938.

[L] M. Ledoux, The Concentration of Measure Phenomenon, Mathematical Surveys and Monographs,
vol. 89, American Mathematical Society, Providence, RI, 2001.

[LT] M. Ledoux, M. Talagrand, Probability in Banach spaces. Isoperimetry and processes, Ergebnisse
der Mathematik und ihrer Grenzgebiete (3), vol. 23, Springer, Berlin, 1991.

[MT] P. Mankiewicz, N. Tomczak-Jaegermann, Quotients of finite-dimensional Banach spaces; random
phenomena, in: W.B. Johnson, J. Lindenstrauss (Eds.), Handbook on the Geometry of Banach
Spaces, vol. 2, Elsevier Science, 2003, pp. 1201–1246.

[M1] V.D. Milman, A new proof of the theorem of A. Dvoretzky on sections of convex bodies, Funct.
Anal. Appl. 5 (1971) 28–37 (English translation).

[M2] V.D. Milman, Almost Euclidean quotient spaces of subspaces of a finite-dimensional normed
space, Proc. Amer. Math. Soc. 94 (3) (1985) 445–449.

[M3] V.D. Milman, The concentration phenomenon and linear structure of finite-dimensional normed
spaces, in: Proceedings of the International Congress of Mathematicians, vols. 1, 2, Berkeley,
CA, 1986, American Mathematical Society, Providence, RI, 1987, pp. 961–975.

[M4] V.D. Milman, Some applications of duality relations, in: Geometric Aspects of Functional Analysis
(1989–90), Lecture Notes in Mathematics, vol. 1469, Springer, Berlin, 1991, pp. 13–40.

[MS1] V.D. Milman, G. Schechtman, Asymptotic Theory of Finite Dimensional Normed Spaces. With
an appendix by M. Gromov, Lecture Notes in Mathematics, vol. 1200, Springer, Berlin, 1986.

[MS2] V.D. Milman, G. Schechtman, Global versus local asymptotic theories of finite-dimensional normed
spaces, Duke Math. J. 90 (1) (1997) 73–93.

[P1] G. Pisier, On the duality between type and cotype, in: Martingale Theory in Harmonic Analysis
and Banach Spaces (Cleveland, OH, 1981), Lecture Notes in Mathematics, vol. 939, Springer,
Berlin, 1982, pp. 131–144.

[P2] G. Pisier, Volumes of Convex Bodies and Banach Space Geometry, Cambridge University Press,
Cambridge, 1989.

[S1] S.J. Szarek, Nets of Grassmann manifold and orthogonal group, Proceedings of Research Workshop
on Banach Space Theory (Iowa City, IA, 1981) University of Iowa, Iowa City, IA, 1982, pp.
169–185.

[S2] S.J. Szarek, Metric entropy of homogeneous spaces, Quantum Probability (Gda´nsk, 1997), Banach
Center Publication 43, Polish Academy of Science, Warsaw, 1998, pp. 395–410.



438 S.J. Szarek, N. Tomczak-Jaegermann / Journal of Functional Analysis 221 (2005) 407–438

[ST] S.J. Szarek, N. Tomczak-Jaegermann, Saturating constructions for normed spaces. Geom.
Funct. Anal. 14 (6) 2004, to appear. Preprint available athttp://arxiv.org/abs/
math.FA/0407233 .

[T] N. Tomczak-Jaegermann, Banach–Mazur Distances and Finite Dimensional Operator Ideals, Pitman
Monographs, Longman, Harlow 1989.

http://arxiv.org/abs/math.FA/0407233
http://arxiv.org/abs/math.FA/0407233

	Saturating constructions for normed spaces II
	Introduction
	Description of results
	Saturating spaces of cotype qqqq=> 2
	 The global saturation
	Acknowledgements
	References


