510 research outputs found
New determination of abundances and stellar parameters for a set of weak G-band stars
Weak G-band (wGb) stars are very peculiar red giants almost devoided of
carbon and often mildly enriched in lithium. Despite their very puzzling
abundance patterns, very few detailed spectroscopic studies existed up to a few
years ago, preventing any clear understanding of the wGb phenomenon. We
recently proposed the first consistent analysis of published data for 28 wGb
stars and identified them as descendants of early A-type to late B-type stars,
without being able to conclude on their evolutionary status or the origin of
their peculiar abundance pattern.
We used newly obtained high-resolution and high SNR spectra for 19 wGb stars
in the southern and northern hemisphere to homogeneously derive their
fundamental parameters, metallicities, as well as the spectroscopic abundances
for Li, C, N, O, Na, Sr, and Ba. We also computed dedicated stellar evolution
models that we used to determine the masses and to investigate the evolutionary
status and chemical history of the stars in our sample. We confirm that the wGb
stars are stars in the mass range 3.2 to 4.2 M. We suggest that a large
fraction could be mildly evolved stars on the SGB currently undergoing the 1st
DUP, while a smaller number of stars are more probably in the core He burning
phase at the clump. After analysing their abundance pattern, we confirm their
strong N enrichment anti-correlated with large C depletion, characteristic of
material fully processed through the CNO cycle to an extent not known in other
evolved intermediate-mass stars. However, we demonstrate here that such a
pattern is very unlikely due to self-enrichment. In the light of the current
observational constraints, no solid self-consistent pollution scenario can be
presented either, leaving the wGb puzzle largely unsolved.Comment: 19 pages , 14 figures, accepted for publication in Astronomy &
Astrophysic
Gaia FGK Benchmark Stars: Effective temperatures and surface gravities
Large Galactic stellar surveys and new generations of stellar atmosphere
models and spectral line formation computations need to be subjected to careful
calibration and validation and to benchmark tests. We focus on cool stars and
aim at establishing a sample of 34 Gaia FGK Benchmark Stars with a range of
different metallicities. The goal was to determine the effective temperature
and the surface gravity independently from spectroscopy and atmospheric models
as far as possible. Fundamental determinations of Teff and logg were obtained
in a systematic way from a compilation of angular diameter measurements and
bolometric fluxes, and from a homogeneous mass determination based on stellar
evolution models. The derived parameters were compared to recent spectroscopic
and photometric determinations and to gravity estimates based on seismic data.
Most of the adopted diameter measurements have formal uncertainties around 1%,
which translate into uncertainties in effective temperature of 0.5%. The
measurements of bolometric flux seem to be accurate to 5% or better, which
contributes about 1% or less to the uncertainties in effective temperature. The
comparisons of parameter determinations with the literature show in general
good agreements with a few exceptions, most notably for the coolest stars and
for metal-poor stars. The sample consists of 29 FGK-type stars and 5 M giants.
Among the FGK stars, 21 have reliable parameters suitable for testing,
validation, or calibration purposes. For four stars, future adjustments of the
fundamental Teff are required, and for five stars the logg determination needs
to be improved. Future extensions of the sample of Gaia FGK Benchmark Stars are
required to fill gaps in parameter space, and we include a list of suggested
candidates.Comment: Accepted by A&A; 34 pages (printer format), 14 tables, 13 figures;
language correcte
The Zeta Herculis binary system revisited. Calibration and seismology
We have revisited the calibration of the visual binary system Zeta Herculis
with the goal to give the seismological properties of the G0 IV sub-giant Zeta
Her A. We have used the most recent physical and observational data. For the
age we have obtained 3387 Myr, for the masses respectively 1.45 and 0.98 solar
mass, for the initial helium mass fraction 0.243, for the initial mass ratio of
heavy elements to hydrogen 0.0269 and for the mixing-length parameters
respectively 0.92 and 0.90 using the Canuto & Mazitelli (1991, 1992) convection
theory. Our results do not exclude that Zeta Her A is itself a binary
sub-system; the mass of the hypothetical unseen companion would be smaller than
0.05 solar mass. The adiabatic oscillation spectrum of Zeta Her A is found to
be a complicated superposition of acoustic and gravity modes; some of them have
a dual character. This greatly complicates the classification of the non-radial
modes. The echelle diagram used by the observers to extract the frequencies
will work for ell=0, 2, 3. The large difference is found to be of the order of
42 mu Hz, in agreement with the Martic et al. (2001) seismic observations.Comment: 12 pages, A&A in pres
A large sample of calibration stars for Gaia: log g from Kepler and CoRoT
Asteroseismic data can be used to determine surface gravities with precisions
of < 0.05 dex by using the global seismic quantities Deltanu and nu_max along
with Teff and [Fe/H]. Surface gravity is also one of the four stellar
properties to be derived by automatic analyses for 1 billion stars from Gaia
data (workpackage GSP_Phot). We explore seismic data from MS F, G, K stars
(solar-like stars) observed by Kepler as a potential calibration source for
methods that Gaia will use for object characterisation (log g). We calculate
log g for bright nearby stars for which radii and masses are known, and using
their global seismic quantities in a grid-based method, we determine an
asteroseismic log g to within 0.01 dex of the direct calculation, thus
validating the accuracy of our method. We find that errors in Teff and mainly
[Fe/H] can cause systematic errors of 0.02 dex. We then apply our method to a
list of 40 stars to deliver precise values of surface gravity, i.e. sigma <
0.02 dex, and we find agreement with recent literature values. Finally, we
explore the precision we expect in a sample of 400+ Kepler stars which have
their global seismic quantities measured. We find a mean uncertainty
(precision) on the order of <0.02 dex in log g over the full explored range 3.8
< log g < 4.6, with the mean value varying only with stellar magnitude (0.01 -
0.02 dex). We study sources of systematic errors in log g and find possible
biases on the order of 0.04 dex, independent of log g and magnitude, which
accounts for errors in the Teff and [Fe/H] measurements, as well as from using
a different grid-based method. We conclude that Kepler stars provide a wealth
of reliable information that can help to calibrate methods that Gaia will use,
in particular, for source characterisation with GSP_Phot where excellent
precision (small uncertainties) and accuracy in log g is obtained from seismic
data.Comment: Accepted MNRAS, 15 pages (10 figures and 3 tables), v2=some rewording
of two sentence
VLT Observations of Turnoff stars in the Globular Cluster NGC 6397
VLT-UVES high resolution spectra of seven turnoff stars in the metal-poor
globular cluster NGC 6397 have been obtained. Atmospheric parameters and
abundances of several elements (Li, Na, Mg, Ca, Sc, Ti, Cr, Fe, Ni, Zn and Ba)
were derived for program stars. The mean iron abundance is [Fe/H] = -2.02, with
no star-to-star variation. The mean abundances of the alpha-elements (Ca, Ti)
and of the iron-peak elements (Sc, Cr, Ni) are consistent with abundances
derived for field stars of similar metallicity. Magnesium is also almost solar,
consistent with the values found by Idiart & Th\'evenin (2000) when non-LTE
effects (NLTE hereafter) are taken into account. The sodium abundance derived
for five stars is essentially solar, but one object (A447) is clearly Na
deficient. These results are compatible with the expected abundance range
estimated from the stochastic evolutionary halo model by Argast et al. (2000)
when at the epoch of [Fe/H] -2 the interstellar medium is supposed to
become well-mixed.Comment: to appear in A&
The metallicity range of variables in M3
The recently published spectroscopic metallicities of RR Lyrae stars in M3
(Sandstrom, K., Pilachowski, C. A., and Saha, A. 2001, AJ 122, 3212) though
show a relatively wide range of the [Fe/H] values, the conclusion that no
metallicity spread is real has been drawn, as no dependence on either minimum
temperature or period was detected. Comparing these spectroscopic metallicities
with [Fe/H] calculated from the Fourier parameters of the light curves of the
variables a correlation between the [Fe/H] values appears. As a consequence of
the independence of the spectroscopic and photometric metallicities, this
correlation points to the reality of a metallicity spread. The absolute
magnitudes of these stars follow a similar trend along both the spectroscopic
and photometric metallicities as the general relation
predicts, which strengthens that the detected metallicity range is real.Comment: 5 pages, 4 figures, accepted for publication in Astronomy and
Astrophysic
Complexity and robustness of the flavonoid transcriptional regulatory network revealed by comprehensive analyses of MYB-bHLH-WDR complexes and their targets in Arabidopsis seed.
In Arabidopsis thaliana, proanthocyanidins (PAs) accumulate in the innermost cell layer of the seed coat (i.e. endothelium, chalaza and micropyle). The expression of the biosynthetic genes involved relies on the transcriptional activity of R2R3-MYB and basic helix-loop-helix (bHLH) proteins which form ternary complexes (\u27MBW\u27) with TRANSPARENT TESTA GLABRA1 (TTG1) (WD repeat protein). The identification of the direct targets and the determination of the nature and spatio-temporal activity of these MBW complexes are essential steps towards a comprehensive understanding of the transcriptional mechanisms that control flavonoid biosynthesis. In this study, various molecular, genetic and biochemical approaches were used. Here, we have demonstrated that, of the 12 studied genes of the pathway, only dihydroflavonol-4-reductase (DFR), leucoanthocyanidin dioxygenase (LDOX), BANYULS (BAN), TRANSPARENT TESTA 19 (TT19), TT12 and H(+) -ATPase isoform 10 (AHA10) are direct targets of the MBW complexes. Interestingly, although the TT2-TT8-TTG1 complex plays the major role in developing seeds, three additional MBW complexes (i.e. MYB5-TT8-TTG1, TT2-EGL3-TTG1 and TT2-GL3-TTG1) were also shown to be involved, in a tissue-specific manner. Finally, a minimal promoter was identified for each of the target genes of the MBW complexes. Altogether, by answering fundamental questions and by demonstrating or invalidating previously made hypotheses, this study provides a new and comprehensive view of the transcriptional regulatory mechanisms controlling PA and anthocyanin biosynthesis in Arabidopsis
Lagrange formalism of memory circuit elements: classical and quantum formulations
The general Lagrange-Euler formalism for the three memory circuit elements,
namely, memristive, memcapacitive, and meminductive systems, is introduced. In
addition, {\it mutual meminductance}, i.e. mutual inductance with a state
depending on the past evolution of the system, is defined. The Lagrange-Euler
formalism for a general circuit network, the related work-energy theorem, and
the generalized Joule's first law are also obtained. Examples of this formalism
applied to specific circuits are provided, and the corresponding Hamiltonian
and its quantization for the case of non-dissipative elements are discussed.
The notion of {\it memory quanta}, the quantum excitations of the memory
degrees of freedom, is presented. Specific examples are used to show that the
coupling between these quanta and the well-known charge quanta can lead to a
splitting of degenerate levels and to other experimentally observable quantum
effects
A new system for fast and quantitative analysis of heterologous gene expression in plants
Large-scale analysis of transcription factor–cis-acting element interactions in plants, or the dissection of complex transcriptional regulatory mechanisms, requires rapid, robust and reliable systems for the quantification of gene expression.Here, we describe a new system for transient expression analysis of transcription factors, which takes advantage of the fast and easy production and transfection of Physcomitrella patens protoplasts, coupled to flow cytometry quantification of a fluorescent protein (green fluorescent protein). Two small-sized and high-copy Gateway® vectors were specifically designed, although standard binary vectors can also be employed. As a proof of concept, the regulation of BANYULS (BAN), a key structural gene involved in proanthocyanidin biosynthesis in Arabidopsis thaliana seeds, was used. In P. patens, BAN expression is activated by a complex composed of three proteins (TT2/AtMYB123, TT8/bHLH042 and TTG1), and is inhibited by MYBL2, a transcriptional repressor, as in Arabidopsis. Using this approach, two new regulatory sequences that are necessary and sufficient for specific BAN expression in proanthocyanidin-accumulating cells were identified. This one hybrid-like plant system was successfully employed to quantitatively assess the transcriptional activity of four regulatory proteins, and to identify their target recognition sites on the BAN promoter
- …