141 research outputs found

    Training algorithms for artificial neural network in predicting of the content of chemical elements in the upper soil layer

    Full text link
    Models based on Artificial Neural Networks (ANN) in recent years are increasingly being used in environmental studies. Among the many types of ANN, the network type Multilayer Perceptron (MLP) has become most widespread. Such networks are universal, simple, and suitable for most tasks. The main problem when modelling using MLP is the choice of the learning algorithm. In this paper, we compared several learning algorithms: Levenberg-Marquart (LM), LM with Bayes regularization (BR), gradient descent (GD), and GD with the speed parameter setting (GDA). The data for modelling were taken from the results of the soil screening of an urbanized area. The spatial distribution of the chemical element Chromium (Cr) in the surface layer of the soil was simulated. The structure of the MLP network was chosen using computer simulations based on minimization of the root mean squared error (RMSE). The model using the LM training algorithm showed the best accuracy. © 2018 Author(s)

    Unexpected result for the acylation of arylhydrazonoethanethioamides

    Full text link
    The acylation of arylhydrazonoethanethioamides containing primary amino group did not yield acylthioamides as expected. Surprisingly, the cyclic 5-acylimino-2,5-dihydro-1,2,3-thiadiazoles were obtained. The formation of thiadiazoles in this reaction was explained by the higher ability of arylhydrazono-N-acylthioacetamide intermediates to be oxidized comparing to their precursors. The presence of pseudobicyclic aromatic structure in the reaction product was a main factor favoring the formation of 1,2,3-thiadiazole ring. © 2013 Elsevier Ltd. All rights reserved

    Molecular Oxygen Lignin Depolymerization: An Insight into the Stability of Phenolic Monomers

    Full text link
    This is the peer reviewed version of the following article: Y. Mathieu, J. D. Vidal, L. Arribas Martínez, N. Abad Fernández, S. Iborra, A. Corma, ChemSusChem 2020, 13, 4743, which has been published in final form at https://doi.org/10.1002/cssc.202001295. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] During oxidative depolymn. of lignin in aq. alk. medium using mol. oxygen as oxidant, the highly functionalized primary phenolic monomers are not stable products, owing to various not fully identified secondary reaction mechanisms. However, better understanding of the mechanisms responsible for the instability of the main part of the products of interest derived from lignin is of much interest. Evaluation of their individual reactivities under oxidative conditions should significantly help to find a better way to valorize the lignin polymer and to maximize the yields of target value-added products. Consequently, the main objective of this study is to assess the individual stabilities of some selected ligninbased phenolic compds., such as vanillin, vanillic acid, and acetovanillone, together with some other pure chem. compds. such as phenol and anisole to give an insight into the mechanisms responsible for the simultaneous formation and repolymn. of those products and the influence of the oxidn. conditions. Various complementary strategies of stabilization are proposed, discussed, and applied for the oxidative depolymn. reactions of a tech. lignin extd. from pinewood with a high content of b-O-4 interconnecting bonds to try to obtain enhanced yields of value-added products.The authors thank Tecnicas Reunidas for material and financial support. We also acknowledge the Spanish Ministry of Science, Innovation, and Universities for funding through the "Severo Ochoa" Excellence Program (SEV 2016-0683) and the LIGNO-PRIZED project from the Spanish Centre for the Development of Industrial Technology (CDTI) in the framework of the Strategic Program of National Business Research Consortia (CIEN-2016). Special and kindly thanks are also given to Dr. Dalgi Sunith Barbosa Trillos and Dr. Jakob Mottweiler for their priceless help during the elaboration of the present work.Mathieu, Y.; Vidal, JD.; Arribas Martínez, L.; Abad Fernández, N.; Iborra Chornet, S.; Corma Canós, A. (2020). Molecular Oxygen Lignin Depolymerization: An Insight into the Stability of Phenolic Monomers. ChemSusChem. 13(17):4743-4758. https://doi.org/10.1002/cssc.202001295S474347581317BP. energy outlook2019 https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2019.pdf.J. Bluestein J. Rackley ICF International technical report2010 Coverage of Petroleum Sector Greenhouse Gas Emissions under Climate Policy.Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of Transportation Fuels from Biomass:  Chemistry, Catalysts, and Engineering. Chemical Reviews, 106(9), 4044-4098. doi:10.1021/cr068360dFache, M., Boutevin, B., & Caillol, S. (2015). Vanillin Production from Lignin and Its Use as a Renewable Chemical. ACS Sustainable Chemistry & Engineering, 4(1), 35-46. doi:10.1021/acssuschemeng.5b01344Volf, I., & Popa, V. I. (2018). Integrated Processing of Biomass Resources for Fine Chemical Obtaining. Biomass as Renewable Raw Material to Obtain Bioproducts of High-Tech Value, 113-160. doi:10.1016/b978-0-444-63774-1.00004-1Chio, C., Sain, M., & Qin, W. (2019). Lignin utilization: A review of lignin depolymerization from various aspects. Renewable and Sustainable Energy Reviews, 107, 232-249. doi:10.1016/j.rser.2019.03.008Wang, H., Pu, Y., Ragauskas, A., & Yang, B. (2019). From lignin to valuable products–strategies, challenges, and prospects. Bioresource Technology, 271, 449-461. doi:10.1016/j.biortech.2018.09.072Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989dVohra, M., Manwar, J., Manmode, R., Padgilwar, S., & Patil, S. (2014). Bioethanol production: Feedstock and current technologies. Journal of Environmental Chemical Engineering, 2(1), 573-584. doi:10.1016/j.jece.2013.10.013Claassen, P. A. M., van Lier, J. B., Lopez Contreras, A. M., van Niel, E. W. J., Sijtsma, L., Stams, A. J. M., … Weusthuis, R. A. (1999). Utilisation of biomass for the supply of energy carriers. Applied Microbiology and Biotechnology, 52(6), 741-755. doi:10.1007/s002530051586Kamm, B., & Kamm, M. (2004). Principles of biorefineries. Applied Microbiology and Biotechnology, 64(2), 137-145. doi:10.1007/s00253-003-1537-7Banerjee, S., Mudliar, S., Sen, R., Giri, B., Satpute, D., Chakrabarti, T., & Pandey, R. A. (2010). Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. Biofuels, Bioproducts and Biorefining, 4(1), 77-93. doi:10.1002/bbb.188Howard, R. L., Abotsi, E., Jansen, van R. E. L., & Howard, S. (2003). Lignocellulose biotechnology: issues of bioconversion and enzyme production. African Journal of Biotechnology, 2(12), 602-619. doi:10.5897/ajb2003.000-1115Kleinert, M., & Barth, T. (2008). Towards a Lignincellulosic Biorefinery: Direct One-Step Conversion of Lignin to Hydrogen-Enriched Biofuel. Energy & Fuels, 22(2), 1371-1379. doi:10.1021/ef700631wBajpai, P. (2018). Wood-Based Products and Chemicals. Biermann’s Handbook of Pulp and Paper, 233-247. doi:10.1016/b978-0-12-814240-0.00008-2Zakzeski, J., Bruijnincx, P. C. A., Jongerius, A. L., & Weckhuysen, B. M. (2010). The Catalytic Valorization of Lignin for the Production of Renewable Chemicals. Chemical Reviews, 110(6), 3552-3599. doi:10.1021/cr900354uAmen-Chen, C., Pakdel, H., & Roy, C. (2001). Production of monomeric phenols by thermochemical conversion of biomass: a review. Bioresource Technology, 79(3), 277-299. doi:10.1016/s0960-8524(00)00180-2Reale, S., Di Tullio, A., Spreti, N., & De Angelis, F. (2004). Mass spectrometry in the biosynthetic and structural investigation of lignins. Mass Spectrometry Reviews, 23(2), 87-126. doi:10.1002/mas.10072Dorrestijn, E., Laarhoven, L. J. J., Arends, I. W. C. E., & Mulder, P. (2000). The occurrence and reactivity of phenoxyl linkages in lignin and low rank coal. Journal of Analytical and Applied Pyrolysis, 54(1-2), 153-192. doi:10.1016/s0165-2370(99)00082-0Evans, R. J., Milne, T. A., & Soltys, M. N. (1986). Direct mass-spectrometric studies of the pyrolysis of carbonaceous fuels. Journal of Analytical and Applied Pyrolysis, 9(3), 207-236. doi:10.1016/0165-2370(86)80012-2Chen, Z., & Wan, C. (2017). Biological valorization strategies for converting lignin into fuels and chemicals. Renewable and Sustainable Energy Reviews, 73, 610-621. doi:10.1016/j.rser.2017.01.166Pu, Y., Zhang, D., Singh, P. M., & Ragauskas, A. J. (2008). The new forestry biofuels sector. Biofuels, Bioproducts and Biorefining, 2(1), 58-73. doi:10.1002/bbb.48Yuan, Z., Cheng, S., Leitch, M., & Xu, C. (Charles). (2010). Hydrolytic degradation of alkaline lignin in hot-compressed water and ethanol. Bioresource Technology, 101(23), 9308-9313. doi:10.1016/j.biortech.2010.06.140Reiter, J., Strittmatter, H., Wiemann, L. O., Schieder, D., & Sieber, V. (2013). Enzymatic cleavage of lignin β-O-4 aryl ether bonds via net internal hydrogen transfer. Green Chemistry, 15(5), 1373. doi:10.1039/c3gc40295aBehling, R., Valange, S., & Chatel, G. (2016). Heterogeneous catalytic oxidation for lignin valorization into valuable chemicals: what results? What limitations? What trends? Green Chemistry, 18(7), 1839-1854. doi:10.1039/c5gc03061gCollinson, S. R., & Thielemans, W. (2010). The catalytic oxidation of biomass to new materials focusing on starch, cellulose and lignin. Coordination Chemistry Reviews, 254(15-16), 1854-1870. doi:10.1016/j.ccr.2010.04.007Pandey, M. P., & Kim, C. S. (2010). Lignin Depolymerization and Conversion: A Review of Thermochemical Methods. Chemical Engineering & Technology, 34(1), 29-41. doi:10.1002/ceat.201000270Mathias, A. L., & Rodrigues, A. E. (1995). Production of Vanillin by Oxidation of Pine Kraft Lignins with Oxygen. Holzforschung, 49(3), 273-278. doi:10.1515/hfsg.1995.49.3.273Villar, J. C., Caperos, A., & García-Ochoa, F. (2001). Oxidation of hardwood kraft-lignin to phenolic derivatives with oxygen as oxidant. Wood Science and Technology, 35(3), 245-255. doi:10.1007/s002260100089Calvo-Flores, F. G., & Dobado, J. A. (2010). Lignin as Renewable Raw Material. ChemSusChem, 3(11), 1227-1235. doi:10.1002/cssc.201000157’T Hart, B. A., Simons, J. M., Shoshan, K.-S., Bakker, N. P. M., & Labadie, R. P. (1990). Antiarthritic activity of the newly developed neutrophil oxidative burst antagonist apocynin. Free Radical Biology and Medicine, 9(2), 127-131. doi:10.1016/0891-5849(90)90115-yStefanska, J., Sarniak, A., Wlodarczyk, A., Sokolowska, M., Pniewska, E., Doniec, Z., … Pawliczak, R. (2012). Apocynin reduces reactive oxygen species concentrations in exhaled breath condensate in asthmatics. Experimental Lung Research, 38(2), 90-99. doi:10.3109/01902148.2011.649823Yancheva, D., Velcheva, E., Glavcheva, Z., Stamboliyska, B., & Smelcerovic, A. (2016). Insights in the radical scavenging mechanism of syringaldehyde and generation of its anion. Journal of Molecular Structure, 1108, 552-559. doi:10.1016/j.molstruc.2015.12.054Srinivasulu, C., Ramgopal, M., Ramanjaneyulu, G., Anuradha, C. M., & Suresh Kumar, C. (2018). Syringic acid (SA) ‒ A Review of Its Occurrence, Biosynthesis, Pharmacological and Industrial Importance. Biomedicine & Pharmacotherapy, 108, 547-557. doi:10.1016/j.biopha.2018.09.069Baker, C. J., Mock, N. M., Whitaker, B. D., Roberts, D. P., Rice, C. P., Deahl, K. L., & Aver’yanov, A. A. (2005). Involvement of acetosyringone in plant–pathogen recognition. Biochemical and Biophysical Research Communications, 328(1), 130-136. doi:10.1016/j.bbrc.2004.12.153Liu, C., Wu, S., Zhang, H., & Xiao, R. (2019). Catalytic oxidation of lignin to valuable biomass-based platform chemicals: A review. Fuel Processing Technology, 191, 181-201. doi:10.1016/j.fuproc.2019.04.007Levec, J., & Pintar, A. (2007). Catalytic wet-air oxidation processes: A review. Catalysis Today, 124(3-4), 172-184. doi:10.1016/j.cattod.2007.03.035Xiang, Q., & Lee, Y. Y. (2001). Production of Oxychemicals from Precipitated Hardwood Lignin. Applied Biochemistry and Biotechnology, 91-93(1-9), 71-80. doi:10.1385/abab:91-93:1-9:71Santos, S. G., Marques, A. P., Lima, D. L. D., Evtuguin, D. V., & Esteves, V. I. (2010). Kinetics of Eucalypt Lignosulfonate Oxidation to Aromatic Aldehydes by Oxygen in Alkaline Medium. Industrial & Engineering Chemistry Research, 50(1), 291-298. doi:10.1021/ie101402tWu, G., Heitz, M., & Chornet, E. (1994). Improved Alkaline Oxidation Process for the Production of Aldehydes (Vanillin and Syringaldehyde) from Steam-Explosion Hardwood Lignin. Industrial & Engineering Chemistry Research, 33(3), 718-723. doi:10.1021/ie00027a034Bhargava, S., Jani, H., Tardio, J., Akolekar, D., & Hoang, M. (2007). Catalytic Wet Oxidation of Ferulic Acid (A Model Lignin Compound) Using Heterogeneous Copper Catalysts. Industrial & Engineering Chemistry Research, 46(25), 8652-8656. doi:10.1021/ie070085dDeng, H., Lin, L., Sun, Y., Pang, C., Zhuang, J., Ouyang, P., … Liu, S. (2008). Activity and Stability of Perovskite-Type Oxide LaCoO3 Catalyst in Lignin Catalytic Wet Oxidation to Aromatic Aldehydes Process. Energy & Fuels, 23(1), 19-24. doi:10.1021/ef8005349Deng, H., Lin, L., Sun, Y., Pang, C., Zhuang, J., Ouyang, P., … Liu, S. (2008). Perovskite-type Oxide LaMnO3: An Efficient and Recyclable Heterogeneous Catalyst for the Wet Aerobic Oxidation of Lignin to Aromatic Aldehydes. Catalysis Letters, 126(1-2), 106-111. doi:10.1007/s10562-008-9588-0Ansaloni, S., Russo, N., & Pirone, R. (2017). Wet Air Oxidation of Industrial Lignin Case Study: Influence of the Dissolution Pretreatment and Perovskite-type Oxides. Waste and Biomass Valorization, 9(11), 2165-2179. doi:10.1007/s12649-017-9947-4Deng, H., Lin, L., & Liu, S. (2010). Catalysis of Cu-Doped Co-Based Perovskite-Type Oxide in Wet Oxidation of Lignin To Produce Aromatic Aldehydes. Energy & Fuels, 24(9), 4797-4802. doi:10.1021/ef100768eZhang, J., Deng, H., & Lin, L. (2009). Wet Aerobic Oxidation of Lignin into Aromatic Aldehydes Catalysed by a Perovskite-type Oxide: LaFe1-xCuxO3 (x=0, 0.1, 0.2). Molecules, 14(8), 2747-2757. doi:10.3390/molecules14082747Gao, P., Li, C., Wang, H., Wang, X., & Wang, A. (2013). Perovskite hollow nanospheres for the catalytic wet air oxidation of lignin. Chinese Journal of Catalysis, 34(10), 1811-1815. doi:10.1016/s1872-2067(12)60691-3Gale, M., Cai, C. M., & Gilliard‐Abdul‐Aziz, K. L. (2020). Heterogeneous Catalyst Design Principles for the Conversion of Lignin into High‐Value Commodity Fuels and Chemicals. ChemSusChem, 13(8), 1947-1966. doi:10.1002/cssc.202000002Pepper, J. M., Baylis, P. E. T., & Adler, E. (1959). THE ISOLATION AND PROPERTIES OF LIGNINS OBTAINED BY THE ACIDOLYSIS OF SPRUCE AND ASPEN WOODS IN DIOXANE–WATER MEDIUM. Canadian Journal of Chemistry, 37(8), 1241-1248. doi:10.1139/v59-183Yuan, T.-Q., Sun, S.-N., Xu, F., & Sun, R.-C. (2011). Characterization of Lignin Structures and Lignin–Carbohydrate Complex (LCC) Linkages by Quantitative 13C and 2D HSQC NMR Spectroscopy. Journal of Agricultural and Food Chemistry, 59(19), 10604-10614. doi:10.1021/jf2031549Bauer, S., Sorek, H., Mitchell, V. D., Ibáñez, A. B., & Wemmer, D. E. (2012). Characterization of Miscanthus giganteus Lignin Isolated by Ethanol Organosolv Process under Reflux Condition. Journal of Agricultural and Food Chemistry, 60(33), 8203-8212. doi:10.1021/jf302409dWen, J.-L., Sun, S.-L., Xue, B.-L., & Sun, R.-C. (2013). Recent Advances in Characterization of Lignin Polymer by Solution-State Nuclear Magnetic Resonance (NMR) Methodology. Materials, 6(1), 359-391. doi:10.3390/ma6010359Peterson, D. J., & Loening, N. M. (2007). QQ-HSQC: a quick, quantitative heteronuclear correlation experiment for NMR spectroscopy. Magnetic Resonance in Chemistry, 45(11), 937-941. doi:10.1002/mrc.2073Sette, M., Wechselberger, R., & Crestini, C. (2011). Elucidation of Lignin Structure by Quantitative 2D NMR. Chemistry - A European Journal, 17(34), 9529-9535. doi:10.1002/chem.201003045Tarabanko, V. E., Petukhov, D. V., & Selyutin, G. E. (2004). New Mechanism for the Catalytic Oxidation of Lignin to Vanillin. Kinetics and Catalysis, 45(4), 569-577. doi:10.1023/b:kica.0000038087.95130.a5Rinesch, T., Mottweiler, J., Puche, M., Concepción, P., Corma, A., & Bolm, C. (2017). Mechanistic Investigation of the Catalyzed Cleavage for the Lignin β-O-4 Linkage: Implications for Vanillin and Vanillic Acid Formation. ACS Sustainable Chemistry & Engineering, 5(11), 9818-9825. doi:10.1021/acssuschemeng.7b01725Sette, M., Lange, H., & Crestini, C. (2013). QUANTITATIVE HSQC ANALYSES OF LIGNIN: A PRACTICAL COMPARISON. Computational and Structural Biotechnology Journal, 6(7), e201303016. doi:10.5936/csbj.201303016Bujanovic, B., Ralph, S., Reiner, R., Hirth, K., & Atalla, R. (2010). Polyoxometalates in Oxidative Delignification of Chemical Pulps: Effect on Lignin. Materials, 3(3), 1888-1903. doi:10.3390/ma3031888Casimiro, F. M., Costa, C. A. E., Botelho, C. M., Barreiro, M. F., & Rodrigues, A. E. (2019). Kinetics of Oxidative Degradation of Lignin-Based Phenolic Compounds in Batch Reactor. Industrial & Engineering Chemistry Research, 58(36), 16442-16449. doi:10.1021/acs.iecr.9b02818Dabral, S., Hernández, J. G., Kamer, P. C. J., & Bolm, C. (2017). Organocatalytic Chemoselective Primary Alcohol Oxidation and Subsequent Cleavage of Lignin Model Compounds and Lignin. ChemSusChem, 10(13), 2707-2713. doi:10.1002/cssc.201700703Schutyser, W., Renders, T., Van den Bosch, S., Koelewijn, S.-F., Beckham, G. T., & Sels, B. F. (2018). Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chemical Society Reviews, 47(3), 852-908. doi:10.1039/c7cs00566kSubbotina, E., Velty, A., Samec, J. S. M., & Corma, A. (2020). Zeolite‐Assisted Lignin‐First Fractionation of Lignocellulose: Overcoming Lignin Recondensation through Shape‐Selective Catalysis. ChemSusChem, 13(17), 4528-4536. doi:10.1002/cssc.202000330Mattsson, C., Andersson, S.-I., Belkheiri, T., Åmand, L.-E., Olausson, L., Vamling, L., & Theliander, H. (2016). Using 2D NMR to characterize the structure of the low and high molecular weight fractions of bio-oil obtained from LignoBoost™ kraft lignin depolymerized in subcritical water. Biomass and Bioenergy, 95, 364-377. doi:10.1016/j.biombioe.2016.09.004Rinaldi, R., Jastrzebski, R., Clough, M. T., Ralph, J., Kennema, M., Bruijnincx, P. C. A., & Weckhuysen, B. M. (2016). Paving the Way for Lignin Valorisation: Recent Advances in Bioengineering, Biorefining and Catalysis. Angewandte Chemie International Edition, 55(29), 8164-8215. doi:10.1002/anie.201510351Rinaldi, R., Jastrzebski, R., Clough, M. T., Ralph, J., Kennema, M., Bruijnincx, P. C. A., & Weckhuysen, B. M. (2016). Wege zur Verwertung von Lignin: Fortschritte in der Biotechnik, der Bioraffination und der Katalyse. Angewandte Chemie, 128(29), 8296-8354. doi:10.1002/ange.201510351Tarabanko, V. E., Fomova, N. A., Kuznetsov, B. N., Ivanchenko, N. M., & Kudryashev, A. V. (1995). On the mechanism of vanillin formation in the catalytic oxidation of lignin with oxygen. Reaction Kinetics & Catalysis Letters, 55(1), 161-170. doi:10.1007/bf02075847Venica, A. D., Chen, C.-L., & Gratzl, J. S. (2008). Soda–AQ delignification of poplar wood. Part 1: Reaction mechanism and pulp properties. Holzforschung, 62(6). doi:10.1515/hf.2008.118Gaspa, S., Amura, I., Porcheddu, A., & De Luca, L. (2017). Anhydrides from aldehydes or alcohols via oxidative cross-coupling. New Journal of Chemistry, 41(3), 931-939. doi:10.1039/c6nj02625

    Lignin-first biorefining of Nordic poplar to produce cellulose fibers could displace cotton production on agricultural lands

    Get PDF
    Here, we show that lignin-first biorefining of poplar can enable the production of dissolving cellulose pulp that can produce regenerated cellulose, which could substitute cotton. These results in turn indicate that agricultural land dedicated to cotton could be reclaimed for food production by extending poplar plantations to produce textile fibers. Based on climate-adapted poplar clones capable of growth on marginal lands in the Nordic region, we estimate an environmentally sustainable annual biomass production of similar to 11 tonnes/ha. At scale, lignin-first biorefining of this poplar could annually generate 2.4 tonnes/ha of dissolving pulp for textiles and 1.1 m(3) biofuels. Life cycle assessment indicates that, relative to cotton production, this approach could substantially reduce water consumption and identifies certain areas for further improvement. Overall, this work highlights a new value chain to reduce the environmental footprint of textiles, chemicals, and biofuels while enabling land reclamation and water savings from cotton back to food production

    Microwave-assisted palladium-catalyzed C-C coupling versus nucleophilic aromatic substitution of hydrogen (SN H) in 5-bromopyrimidine by action of bithiophene and its analogues

    Full text link
    5-Bromopyrimidine reacts with 2,2′-bithiophene, [2,2′:5′, 2″]terthiophene and 2-phenylthiophene in the presence of a palladium catalyst to give 5-(het)aryl substituted pyrimidines due to the palladium-catalyzed aryl-aryl C-C coupling. However 5-bromo-4-(het)aryl- pyrimidines have been prepared from the same starting materials through the SN H-reaction catalyzed by a Lewis acid. Conditions for both types of reactions were optimized. All components of the reaction mixtures, including by-products, have been elucidated by gas-liquid chromatography/mass- spectrometry. Evidence for the structure of 4- and 5-bithiophenyl-substituted pyrimidines has first been obtained by means of X-ray crystallography analysis. Molecular orbital calculations (TDDFT), as well as the redox and optical measurements for all new compounds have also been performed. © 2013 Elsevier Ltd. All rights reserved

    Phosphodiesterase 4 inhibition reduces lung fibrosis following targeted type II alveolar epithelial cell injury

    Full text link
    Fibrosis of the lung constitutes a major clinical challenge and novel therapies are required to alleviate the associated morbidity and mortality. Investigating the antifibrotic efficacy of drugs that are already in clinical practice offers an efficient strategy to identify new therapies. The phosphodiesterase 4 (PDE4) inhibitors, approved for the treatment of chronic obstructive pulmonary disease, harbor therapeutic potential for pulmonary fibrosis by augmenting the activity of endogenous antifibrotic mediators that signal through cyclic AMP. In this study, we tested the efficacy of several PDE4 inhibitors including a novel compound (Compound 1) in a murine model of lung fibrosis that results from a targeted type II alveolar epithelial cell injury. We also compared the antifibrotic activity of PDE4 inhibition to the two therapies that are FDA‐approved for idiopathic pulmonary fibrosis (pirfenidone and nintedanib). We found that both preventative (day 0–21) and therapeutic (day 11–21) dosing regimens of the PDE4 inhibitors significantly ameliorated the weight loss and lung collagen accumulation that are the sequelae of targeted epithelial cell damage. In a therapeutic protocol, the reduction in lung fibrosis with PDE4 inhibitor administration was equivalent to pirfenidone and nintedanib. Treatment with this class of drugs also resulted in a decrease in plasma surfactant protein D concentration, a reduction in the plasma levels of several chemokines implicated in lung fibrosis, and an in vitro inhibition of fibroblast profibrotic gene expression. These results motivate further investigation of PDE4 inhibition as a treatment for patients with fibrotic lung disease.We demonstrate that prophylactic and therapeutic inhibition of phosphodiesterase 4 with several different antagonists reduces lung fibrosis induced by a targeted injury to the type II alveolar epithelium. In conjunction with the reduction in lung collagen content, phosphodiesterase inhibition also reduced serum surfactant protein C levels and the expression of profibrotic genes by lung fibroblasts.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/144679/1/phy213753.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/144679/2/phy213753_am.pd

    Diagnostics of enteroviral infections among children in Yekaterinburg city

    Get PDF
    In this study we analyzed the results of laboratory tests for 2066 children with diagnosis of enteroviral infection in its meningitis form (aseptic meningitis). For virological research, a nose and throat swab, and two or three stool specimens were taken. Serological tests were done for 960 children. Seroconversion was assessed in neutralization assays (NA) with Coxsackie virus B1, Coxsackie B2 and Coxsackie B3 reference strains and in NA with isolates from patients (autostrains). In addition, 1044 samples of cerebrospinal fluid (CSF) were tested using polymerase chain reaction (PCR). It was determined that Coxsackie В and ECHO viruses were the main etiological agents during the period from 2003 to 2009. Establishment and verification of the diagnosis required comprehensive approach to the comparison of the results obtained by virological, serological and molecular biological methods.В работе проведена оценка результатов лабораторного обследования 2066 детей с диагнозом ЭВИ, мененгиальная форма. Для вирусологических исследований в работу были взяты носоглоточные смывы и 2-3 пробы фекалий. У 960 детей были проведены серологические исследования. Парные сыворотки были изучены в реакции нейтрализации (PH) с эталонными штаммами вирусов Коксаки В1, Коксаки В2 и Коксаки ВЗ и в PH с аутоштаммами. Кроме того, пробы ликвора от 1044 человек исследованы методом полимеразной цепной реакции (ПЦР). В результате проведенного обследования определены ведущие этиологические агенты в период с 2003 по 2009 гг., которыми явились вирусы Коксаки В и ECHO. При сравнении результатов вирусологического, серологического и молекулярно-биологического методов показана необходимость комплексного обследования пациентов для установления и подтверждения диагноза

    Isolation and characterization of a new CO-utilizing strain, Thermoanaerobacter thermohydrosulfuricus subsp. carboxydovorans, isolated from a geothermal spring in Turkey

    Get PDF
    A novel anaerobic, thermophilic, Gram-positive, spore-forming, and sugar-fermenting bacterium (strain TLO) was isolated from a geothermal spring in Ayaş, Turkey. The cells were straight to curved rods, 0.4–0.6 μm in diameter and 3.5–10 μm in length. Spores were terminal and round. The temperature range for growth was 40–80°C, with an optimum at 70°C. The pH optimum was between 6.3 and 6.8. Strain TLO has the capability to ferment a wide variety of mono-, di-, and polysaccharides and proteinaceous substrates, producing mainly lactate, next to acetate, ethanol, alanine, H2, and CO2. Remarkably, the bacterium was able to grow in an atmosphere of up to 25% of CO as sole electron donor. CO oxidation was coupled to H2 and CO2 formation. The G + C content of the genomic DNA was 35.1 mol%. Based on 16S rRNA gene sequence analysis and the DNA–DNA hybridization data, this bacterium is most closely related to Thermoanaerobacter thermohydrosulfuricus and Thermoanaerobacter siderophilus (99% similarity for both). However, strain TLO differs from Thermoanaerobacter thermohydrosulfuricus in important aspects, such as CO-utilization and lipid composition. These differences led us to propose that strain TLO represents a subspecies of Thermoanaerobacter thermohydrosulfuricus, and we therefore name it Thermoanaerobacter thermohydrosulfuricus subsp. carboxydovorans

    Efficacy of high-intensity, low-volume interval training compared to continuous aerobic training on insulin resistance, skeletal muscle structure and function in adults with metabolic syndrome: study protocol for a randomized controlled clinical trial (Intraining-MET)

    Get PDF
    ABSTRACT: Evidence of the efficacy of high-intensity, low-volume interval training (HIIT-low volume) in treating insulin resistance (IR) in patients with metabolic disorders is contradictory. In addition, it is unknown whether this effect is mediated through muscle endocrine function, which in turn depends on muscle mass and fiber type composition. Our aims were to assess the efficacy of HIIT-low volume compared to continuous aerobic exercise (CAE) in treating IR in adults with metabolic syndrome (MS) and to establish whether musclin, apelin, muscle mass and muscle composition are mediators of the effect. Methods: This is a controlled, randomized, clinical trial using the minimization method, with blinding of those who will evaluate the outcomes and two parallel groups for the purpose of showing superiority. Sixty patients with MS and IR with ages between 40 and 60 years will be included. A clinical evaluation will be carried out, along with laboratory tests to evaluate IR (homeostatic model assessment (HOMA)), muscle endocrine function (serum levels of musclin and apelin), thigh muscle mass (by dual energy x-ray absorptiometry (DXA) and thigh muscle composition (by carnosine measurement with proton magnetic resonance spectroscopy (H–MRS)), before and after 12 weeks of a treadmill exercise program three times a week. Participants assigned to the intervention (n = 30) will receive HIIT-low volume in 22-min sessions that will include six intervals at a load of 90% of maximum oxygen consumption (VO2 max) for 1 min followed by 2 min at 50% of VO2 max. The control group (n = 30) will receive CAE at an intensity of 60% of VO2 max for 36 min. A theoretical model based on structural equations will be proposed to estimate the total, direct and indirect effects of training on IR and the proportion explained by the mediators. Discussion: Compared with CAE, HIIT-low volume can be effective and efficient at improving physical capacity and decreasing cardiovascular risk factors, such as IR, in patients with metabolic disorders. Studies that evaluate mediating variables of the effect of HIIT-low volume on IR, such as endocrine function and skeletal muscle structure, are necessary to understand the role of skeletal muscle in the pathophysiology of MS and their regulation by exercise. Trial registration: NCT03087721. High-intensity Interval, Low Volume Training in Metabolic Syndrome (Intraining-MET). Registered on 22 March 2017, retrospectively registered
    corecore