279 research outputs found

    On buoys, scatterometers and reanalyses for globally representative winds

    Get PDF
    15 pages, 3 figures, 2 tablesMoored buoy winds are of high quality and our only absolute reference for satellite wind calibration and monitoring. General Circulation Models (GCMs) and satellites lack absolute calibration otherwise. Maintaining a long-term data record of surface wind measurements is thus critical to the cross-calibration of satellite winds from different satellite missions and different satellite sensor types (e.g., the SSM/I series microwave radiometers, Ku- vs C- vs L-band scatterometers). The current non-uniform distribution of moored buoys makes them rather unsuitable for global change metrics. The geographical distribution of moored buoys points to a glaring hole in the southern hemisphere. With 60m of global water level stored in the southern hemisphere, scientific misjudgement may have rather drastic consequences. However, buoy monitoring in the SH extratropics is essentially missing and should be recommended in our view. It would be much appreciated if (particularly southern hemisphere governments) would take responsibility in this area. We perform triple collocation (TC) with moored buoys, scatterometers and GCMs to establish the accuracy and calibration of the scatterometer winds and the GCMs at the moored buoy positions. By physical inference, we assume that the spatial sample of buoys is sufficient to obtain a globally representative absolute calibration. This can obviously not be proven, as no globally representative in situ wind network is available. However, given such plausible inference, it appears possible to reach the 0.1 m/s per decade stability in a representative global metric. Moreover, randomly reducing the density of the current spatial distribution of moored buoys, does not appear too harmful. We note that different global metrics provide different trends though, as they cover different spatio-temporal domains, e.g., at all global buoy measurement positions (as in TC), at model grid positions (either regular or uniformly spaced), or at all satellite measurement points (after QC usually). The satellite or GCM representations of the global waters appear clearly the most faithful (see above). The IOVWST community currently converges in the understanding that stress-equivalent wind (U10S) is the most practical retrieval quantity for scatterometers and radiometers, as it may be well validated by GCM and buoy data. This implies that for an accurate computation of U10S from buoys, we ideally need continuous buoy series of: the 10-m wind, SST, air temperature, air humidity, air pressure and ocean current. These variables are used to respectively take out effects of atmospheric stratification, air mass density and ocean mean motion (as the sensed ocean roughness depends on the mean relative difference between water and air motion). As less of this information would become available at the buoys, it will be harder to stay within the climate requirement of 0.1 m/s per decade in the more representative global metrics. Recent publications suggest that observation of OSVW variability in the tropics is quite relevant, e.g., Sherwood et al. (2014), Lin et al. (2015), King et al. (2014) or Sandu et al. (2011), suggesting that spread in climate model sensitivity and model bias can be related to subtle dynamical model aspects, such as moist convection. Another question is thus how dynamical meteorological and oceanographic interaction processes, relevant for the realism of climate models should be addressed by measurement capability in the satellite era. This question is not further addressed in this report.This documentation was developed within the context of the EUMETSAT Satellite Application Facility on Numerical Weather Prediction (NWP SAF), under the Cooperation Agreement dated 16 December, 2003, between EUMETSAT and the Met Office, UK, by one or more partners within the NWP SAF. The partners in the NWP SAF are the Met Office, ECMWF, KNMI and Météo FrancePeer Reviewe

    Second-order structure function analysis of scatterometer winds over the Tropical Pacific

    Get PDF
    22 pages, 16 figures, 1 tableKolmogorov second-order structure functions are used to quantify and compare the small-scale information contained in near-surface ocean wind products derived from measurements by ASCAT on MetOp-A and SeaWinds on QuikSCAT. Two ASCAT and three SeaWinds products are compared in nine regions (classified as rainy or dry) in the tropical Pacific between 10°S and 10°N and 140° and 260°E for the period November 2008 to October 2009. Monthly and regionally averaged longitudinal and transverse structure functions are calculated using along-track samples. To ease the analysis, the following quantities were estimated for the scale range 50 to 300 km and used to intercompare the wind products: (i) structure function slopes, (ii) turbulent kinetic energies (TKE), and (iii) vorticity-to-divergence ratios. All wind products are in good qualitative agreement, but also have important differences. Structure function slopes and TKE differ per wind product, but also show a common variation over time and space. Independent of wind product, longitudinal slopes decrease when sea surface temperature exceeds the threshold for onset of deep convection (about 28°C). In rainy areas and in dry regions during rainy periods, ASCAT has larger divergent TKE than SeaWinds, while SeaWinds has larger vortical TKE than ASCAT. Differences between SeaWinds and ASCAT vortical TKE and vorticity-to-divergence ratios for the convectively active months of each region are large. © 2014. American Geophysical Union. All Rights ReservedThe ASCAT-12.5 and ASCAT-25 data used in this work can be ordered online from the EUMETSAT Data Centre (www.eumetsat.int) as SAF type data in BUFR or NetCDF format. They can also be ordered from PO.DAAC (podaac.jpl.nasa.gov) in NetCDF format only. The SeaWinds-NOAA and QuikSCAT-12.5 data are also available from PO.DAAC. The SeaWinds-KNMI data are available from the KNMI archive upon an email request to [email protected]. Rain-rates and sea surface temperatures were obtained from the Tropical Rainfall Measuring Mission's (TRMM) Microwave Imager (TMI) archive at the Remote Sensing Systems web site (www.ssmi.com). SeaWinds Radiometer (SRAD) rain-rates were obtained from the QuikSCAT 25 km L2B science data product that is available from PO.DAAC. This work has been funded by EUMETSAT in the context of the Numerical Weather Prediction Satellite Applications Facility (NWP SAF). The contribution of GPK has been supported by EUMETSAT as part of the SAF Visiting Scientists programmePeer Reviewe

    On mesoscale analysis and ASCAT ambiguity removal

    Get PDF
    45 pages, 17 figures, 7 tablesIn the so-called two-dimensional variational ambiguity removal (2DVAR) scheme [Vogelzanget al., 2010], the scatterometer observations and the model background (fromthe European Centre for Medium-range Weather Forecasts, ECMWF) are combined using a two-dimensional variational approach, similar to that used in meteorological data assimilation, to provide an analyzed wind field. Since scatterometers provide unique mesoscale information on the wind field, mesoscale analysis is a common challenge for 2DVAR and for mesoscale data assimilation in 4D-var or 3D-var, such as applied using the Integrated Forecasting System (IFS) at ECMWF, Meteo France or in the HIRLAM project (www.hirlam.org). This study elaborates on the common problem of specifying the observation and background error covariances in data assimilationThis documentation was developed within the context of the EUMETSAT Satellite Application Facility on Numerical Weather Prediction (NWP SAF), under the Cooperation Agreement dated 29 June 2011, between EUMETSAT and the Met Office, UK, by one or more partners within the NWP SAF. The partners in the NWP SAF are the Met Office, ECMWF, KNMI and Météo FrancePeer Reviewe

    Online approximations for wind-field models

    Get PDF
    We study online approximations to Gaussian process models for spatially distributed systems. We apply our method to the prediction of wind fields over the ocean surface from scatterometer data. Our approach combines a sequential update of a Gaussian approximation to the posterior with a sparse representation that allows to treat problems with a large number of observations

    RapidScat winds from the OSI SAF

    Get PDF
    2015 EUMETSAT Meteorological Satellite Conference, 21-25 September 2015, Toulouse.-- 1 page, 2 figures, 3 tablesThe RapidScat scatterometer instrument is a speedy and cost-effective replacement for the National Aeronautics and Space Administration (NASA) QuikSCAT satellite, which provided a decade-long ocean vector wind observations. RapidScat was launched on 20 September 2014 and mounted on the International Space Station (ISS). The use of generic algorithms for Ku-band scatterometer wind processing allowed us to develop a good quality wind product in a very short time. The wind products with development status are available to users since early December 2014, only one month after the level 2a data became available. Operational status was achieved in March 2015. The good quality of the winds is confirmed by comparisons of RapidScat with NWP, buoy and ASCAT windsPeer Reviewe

    Ninety minutes to reduce one's intention to eat meat : a preliminary experimental investigation on the effect of watching the Cowspiracy documentary on intention to reduce meat consumption

    Get PDF
    Whereas, past research has shown that using environmental arguments to reduce meat intake are unsuccessful in awareness campaigns, popular documentaries might have the potential to successfully change the public awareness of the environmental implications of meat consumption today. This preliminary study aimed to provide first empirical evidence of the potential effects of watching a popular documentary on a less-known environmental topic among a population that are habitual performers of the behavior under discussion. More precisely, the effects of watching “Cowspiracy: The Sustainability Secret” on the awareness of the environmental implications of meat consumption, the attitude toward eating less meat, and the intention to eat less meat in young adults who consume meat on an (almost) daily basis was studied. The potential impact of Cowspiracy was investigated from the Integrated Change Model perspective. Paper-and-pencil questionnaires were administered to N = 47 participants aged between 19 and 32 before and after watching either Cowspiracy (experimental group, n = 26) or Planet Earth (control group, n = 21). Controlling for the influence of predisposing factors (sociodemographic characteristics gender, age, and socioeconomic status), the results show that watching a popular documentary about the environmental impact of meat production (Cowspiracy) can have a significant effect on the awareness of the environmental consequences of meat consumption, the attitude toward eating less meat, and the intention to reduce meat consumption of young (almost) daily meat eaters. However, results should be interpreted with caution, given the preliminary nature of our study

    pqm4: Testing and Benchmarking NIST PQC on ARM Cortex-M4

    Get PDF
    This paper presents pqm4 – a testing and benchmarking framework for the ARM Cortex-M4. It makes use of a widely available discovery board with 196 KiB of memory and 1 MiB flash ROM. It currently includes 10 key encapsulation mechanisms and 5 signature schemes of the NIST PQC competition. For the remaining 11 schemes, the available implementations do require more than the available memory or they depend on external libraries which makes them arguably unsuitable for embedded devices

    An Improved 2DVAR Ambiguity Removal For ASCAT Wind Retrieval

    Get PDF
    Presentación para el International Ocean Vector Winds Science Team (2015 IOVWST) Meeting, 19-21 May 2015, Portland, Oregon.-- 21 pagesPeer Reviewe

    Impact Of Sub-Cell Wind Variability On ASCAT Wind Quality

    Get PDF
    Presentación para el International Ocean Vector Winds Science Team (2015 IOVWST) Meeting, 19-21 May 2015, Portland, Oregon.--21 pagesPeer Reviewe
    corecore