research

On buoys, scatterometers and reanalyses for globally representative winds

Abstract

15 pages, 3 figures, 2 tablesMoored buoy winds are of high quality and our only absolute reference for satellite wind calibration and monitoring. General Circulation Models (GCMs) and satellites lack absolute calibration otherwise. Maintaining a long-term data record of surface wind measurements is thus critical to the cross-calibration of satellite winds from different satellite missions and different satellite sensor types (e.g., the SSM/I series microwave radiometers, Ku- vs C- vs L-band scatterometers). The current non-uniform distribution of moored buoys makes them rather unsuitable for global change metrics. The geographical distribution of moored buoys points to a glaring hole in the southern hemisphere. With 60m of global water level stored in the southern hemisphere, scientific misjudgement may have rather drastic consequences. However, buoy monitoring in the SH extratropics is essentially missing and should be recommended in our view. It would be much appreciated if (particularly southern hemisphere governments) would take responsibility in this area. We perform triple collocation (TC) with moored buoys, scatterometers and GCMs to establish the accuracy and calibration of the scatterometer winds and the GCMs at the moored buoy positions. By physical inference, we assume that the spatial sample of buoys is sufficient to obtain a globally representative absolute calibration. This can obviously not be proven, as no globally representative in situ wind network is available. However, given such plausible inference, it appears possible to reach the 0.1 m/s per decade stability in a representative global metric. Moreover, randomly reducing the density of the current spatial distribution of moored buoys, does not appear too harmful. We note that different global metrics provide different trends though, as they cover different spatio-temporal domains, e.g., at all global buoy measurement positions (as in TC), at model grid positions (either regular or uniformly spaced), or at all satellite measurement points (after QC usually). The satellite or GCM representations of the global waters appear clearly the most faithful (see above). The IOVWST community currently converges in the understanding that stress-equivalent wind (U10S) is the most practical retrieval quantity for scatterometers and radiometers, as it may be well validated by GCM and buoy data. This implies that for an accurate computation of U10S from buoys, we ideally need continuous buoy series of: the 10-m wind, SST, air temperature, air humidity, air pressure and ocean current. These variables are used to respectively take out effects of atmospheric stratification, air mass density and ocean mean motion (as the sensed ocean roughness depends on the mean relative difference between water and air motion). As less of this information would become available at the buoys, it will be harder to stay within the climate requirement of 0.1 m/s per decade in the more representative global metrics. Recent publications suggest that observation of OSVW variability in the tropics is quite relevant, e.g., Sherwood et al. (2014), Lin et al. (2015), King et al. (2014) or Sandu et al. (2011), suggesting that spread in climate model sensitivity and model bias can be related to subtle dynamical model aspects, such as moist convection. Another question is thus how dynamical meteorological and oceanographic interaction processes, relevant for the realism of climate models should be addressed by measurement capability in the satellite era. This question is not further addressed in this report.This documentation was developed within the context of the EUMETSAT Satellite Application Facility on Numerical Weather Prediction (NWP SAF), under the Cooperation Agreement dated 16 December, 2003, between EUMETSAT and the Met Office, UK, by one or more partners within the NWP SAF. The partners in the NWP SAF are the Met Office, ECMWF, KNMI and Météo FrancePeer Reviewe

    Similar works