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Abstract Kolmogorov second-order structure functions are used to quantify and compare the small-scale
information contained in near-surface ocean wind products derived from measurements by ASCAT on
MetOp-A and SeaWinds on QuikSCAT. Two ASCAT and three SeaWinds products are compared in nine regions
(classified as rainy or dry) in the tropical Pacific between 10�S and 10�N and 140� and 260�E for the period
November 2008 to October 2009. Monthly and regionally averaged longitudinal and transverse structure func-
tions are calculated using along-track samples. To ease the analysis, the following quantities were estimated
for the scale range 50 to 300 km and used to intercompare the wind products: (i) structure function slopes, (ii)
turbulent kinetic energies (TKE), and (iii) vorticity-to-divergence ratios. All wind products are in good qualita-
tive agreement, but also have important differences. Structure function slopes and TKE differ per wind prod-
uct, but also show a common variation over time and space. Independent of wind product, longitudinal
slopes decrease when sea surface temperature exceeds the threshold for onset of deep convection (about
28�C). In rainy areas and in dry regions during rainy periods, ASCAT has larger divergent TKE than SeaWinds,
while SeaWinds has larger vortical TKE than ASCAT. Differences between SeaWinds and ASCAT vortical TKE
and vorticity-to-divergence ratios for the convectively active months of each region are large.

1. Introduction

The ocean and atmosphere exchange heat, moisture, and momentum across the air/sea boundary through
interactions with small-scale structures (i.e., <1000 km) in the near-surface winds. This exchange affects
atmosphere and ocean circulations, weather, and climate. In order to improve their modeling and predic-
tion, global measurements of near-surface ocean wind vectors at high resolution over the oceans are
required. Nowadays, this can be done using scatterometers carried on orbiting satellites.

Satellite scatterometers transmit microwaves toward the Earth and measure the backscattered radiation
from the wind-roughened ocean surface. Sophisticated processing results in high-quality ocean vector
winds that resolve small-scale structure in the near-surface ocean wind field [Vogelzang et al., 2011]. Fore-
casters use satellite winds in marine weather prediction, wave and surge forecasting, and the monitoring of
tropical cyclones and prediction of their trajectories [e.g., Sienkiewicz et al., 2010]. They are also used in
numerical weather prediction (NWP) [Isaksen and Janssen, 2004], for driving ocean models, and to investi-
gate climate variability in both the atmosphere and the ocean [e.g., Bourassa et al., 2010].

Scatterometer wind products differ in the small-scale information they contain. Differences are mainly due
to instrument design (radar frequency and observation geometry), methods used to produce wind vectors
from the measured radar backscatter, quality control, and sampling. Two related spatial analysis methods
that can be used to quantify the information content are wavenumber spectra and second-order structure
functions. Wavenumber spectra have been studied and compared with two-dimensional turbulence theory
by Freilich and Chelton [1986], Wikle et al. [1999], Patoux and Brown [2001], and Xu et al. [2011]. Spectral anal-
ysis has also been used to compare the effects of noise and processing methods on the effective resolution
of winds derived from ASCAT and SeaWinds [Vogelzang et al., 2011]. While spectral analysis can lead to sig-
nificant results in certain study cases, it has limitations—the principle one being that it cannot be applied if
samples have too many missing points. Missing points arise from instrument outage or because the
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retrieved wind is of low quality (mainly due to radar signal contamination caused by extreme wind variability,
rain, land, or ice). Vogelzang et al. [2011] show that from all ASCAT wind data at 25 km grid size in January
2009 only 6% is used in a spectral analysis. This increases to 35% when isolated missing points are interpo-
lated over, leaving about two thirds of the data unused.

Structure functions were introduced by Kolmogorov [1941] and are the key tool used to test turbulence
theory predictions in laboratory experiments and numerical simulations [cf., Sreenivasan and Antonia, 1997].
In this paper, we use second-order structure functions to analyze ocean vector winds derived from the
Advanced Scatterometer (ASCAT) onboard the MetOp-A satellite and the SeaWinds scatterometer onboard
the QuikSCAT satellite. Missing points are much less a problem in a structure function analysis. Indeed the
structure function calculation uses all valid data contained in each sample. This yields more representative
statistics and also facilitates investigation of rainy areas and regions of limited size.

The analysis is carried out for a period when both scatterometers were operational (November 2008 to
October 2009) and focuses on the climatically important Tropical Pacific, subdivided into rainy and dry
regions. The rainy regions contain convergence zones and pools of very warm water that give rise to deep
convection and heavy rain throughout the year, while the dry regions contain the east Pacific cold tongue
and have little rain. The impact of rain contamination is small for ASCAT, but large for SeaWinds. Conse-
quently, rain contamination causes much SeaWinds data to be rejected over the rainy tropics, making this
region particularly difficult to study using spectral methods.

We study ASCAT wind products and SeaWinds products at two different grid sizes (12.5 and 25 km); all
products are level 2B swath winds produced from orbit data. Scatterometers differ in their radar frequency,
observation geometry, and sampling. Products differ in spatial aggregation of the radar backscatter, wind
retrieval processing, and quality control. The two ASCAT products are both operational near-real-time prod-
ucts. The three SeaWinds products are: (i) a near-real-time product at 25 km; (ii) a reprocessing of the real-
time product using different wind retrieval algorithms and quality control; and (iii) a science data product at
12.5 km: QuikSCAT version 3 L2B, which contains many algorithm improvements [Fore et al., 2013]. The dif-
ferences in the three SeaWinds products allow some investigation of different quality control and spatial
processing on the statistics.

The paper is organized as follows. Section 2 contains the basic definitions and formulas for the second-
order structure function and its relationship to the autocorrelation function and spectrum. Theoretical rela-
tionships derived for homogeneous, isotropic turbulence are summarized. Section 3 describes the ASCAT
and SeaWinds scatterometers, lists and briefly describes the wind products and their processing. Section 4
describes the main geophysical features in the Tropical Pacific affecting ocean winds and justifies the
regional subdivision using rain-rates measured by the Tropical Rain Measuring Mission. The results show
that all wind products are in qualitative agreement. Quantitatively there are some important differences,
the most obvious being (i) different scaling laws per wind product and (ii) in rainy areas and in dry regions
during rainy periods ASCAT has larger divergent turbulent kinetic energy (TKE), while SeaWinds has larger
vortical TKE. Our conclusions are given in section 6.

2. Second-Order Structure Functions

2.1. Definitions and Limiting Values
Using the mathematical framework of random functions and physical hypotheses based on Richardson’s
concept of an energy cascade (eddies breaking up into smaller eddies), Kolmogorov [1941] introduced the
velocity increment probability distribution and its moments (structure functions). Velocity increments are
useful because they emphasize the effects of scales of the order of the separation r. Two-point statistics
with respect to the increments at scale r are given by the PDF PrðduÞ, where du5ðduL; du1T ; du2T Þ,
duL5uLðx1rÞ- uLðxÞ, and duiT 5uiT ðx1rÞ- uiT ðxÞ. The subscript L indicates the longitudinal component and
T the transverse component, respectively, the components parallel and perpendicular to the coordinate x
along which increments are taken. In 3-D isotropic turbulence, the two transverse directions are statistically
equivalent, so that duT 5du1T 5du2T . The second-order structure functions are defined by

DLLðrÞ5hduLduLi; (1a)
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DTT ðrÞ5hduT duT i; (1b)

DLT ðrÞ5hduLduT i50; (1c)

with h:i denoting an ensemble average, hduLðrÞi5hduT ðrÞi50, and (1c) follows from the assumption of
isotropy.

Assuming homogeneity and noise-free data, DLL and DTT can be written in terms of the variances r2
L , r2

T ,
and autocorrelation functions qLðrÞ, qT ðrÞ of velocities uL , uT as

DjjðrÞ52r2
j 12qjðrÞ
� �

; (2)

where j5L; T . At large distances, when the autocorrelations go to zero,

lim
r!1

DjjðrÞ52r2
j : (3)

At r50, qLð0Þ5qT ð0Þ51, so that

DLLð0Þ5DTT ð0Þ50: (4)

2.2. Relationship With the Energy Spectrum
The energy spectrum and second-order structure function are in Fourier duality. Setting j5L in Eq. (2) and
taking the Fourier transform yields the extended Wiener-Khinchin formula [cf., Frisch, 1995]:

DLLðrÞ52
ð1

0
dkð12cos krÞELðkÞ; (5)

where EL is the one-dimensional longitudinal spectral energy density at wavenumber k.

2.2.1. Power Laws
If structure functions and energy spectra follow power laws DLLðrÞ / rc and ELðkÞ / k2l, then if 0 < c < 2,
the exponents are related by l5c11 [cf., Frisch, 1995]. Nastrom et al. [1984] found that turbulence near the
tropopause was to a good approximation described from about 2 to 400 km by the Kolmogorov k25=3

power law, and from about 600 to 2000 km by the geostrophic turbulence k23 power law. In terms of struc-
ture functions, these correspond, respectively, to r2=3 and r2 power laws [see Lindborg, 1999; Frehlich and
Sharman, 2010].

2.2.2. Turbulent Kinetic Energy
The turbulent kinetic energy contained in scales less than r can be estimated from spectra by integration

TKEjðrÞ /
ð1

2p=r
dkEjðkÞ; (6)

or from the structure function

TKEjðrÞ / DjjðrÞ: (7)

The two estimates are not equal. However, Vogelzang et al. (J. Vogelzang, G. P. King, and A. Stoffelen, Spatial
variances and their relation to second-order structure functions and spectra, submitted to Journal of Geo-
physical Research, 2014) show that for the ocean surface winds over the tropical Pacific, to a good approxi-
mation TKEjðrÞ � 1

5 DjjðrÞ.

2.3. Isotropy Relation and Vorticity-to-Divergence Ratio
If the turbulence is incompressible, then DLL and DTT are related by the isotropy relation [cf. Frisch, 1995],
which can be written for d-dimensional turbulence as

DTT rð Þ5DLL rð Þ1 r
d21

d
dr

DLL rð Þ: (8)

It follows from (8) that if DLLðrÞ � r2=3, then DTT ðrÞ � r2=3.

Note that at small r, duL � r @uL=@xð Þ and duT � r @uT=@xð Þ. Thus DLLðrÞ represents the divergent energy,
DTT ðrÞ the shear or vortical energy, and their ratio
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RðrÞ5DTT ðrÞ=DLLðrÞ; (9)

represents the ratio of vorticity-to-divergence. Again if DLLðrÞ � r2=3, then it follows from (8) that
R5ð3d21Þ=ð3d23Þ, yielding R55=3 for 2-D turbulence, and R54=3 for 3-D turbulence. On the other hand,
if turbulence is due to gravity wave interactions, then R53=5 [Lindborg, 2007]. Finally, we note that in the
case of geostrophic turbulence, substituting DLLðrÞ � r2 into (8) yields R53. Thus, turbulence in the atmos-
phere can be considered to be dominated by vortical modes if R > 1 or dominated by divergent modes if
R < 1.

3. Data

3.1. Satellites and Scatterometer
The QuikSCAT satellite was launched by the National Aeronautics and Space Administration (NASA) in June
1999. The mission produced ocean vector winds from July 1999 until November 2009. The MetOp-A satellite
was launched in October 2006 and is operated by the European Organisation for the Exploitation of Meteor-
ological Satellites (EUMETSAT). Both satellites are in quasi-sun-synchronous orbits with an inclination angle
h598:6o. The local equator crossing times are about 06:30 (ascending) and 18:30 (descending) for QuikS-
CAT, and about 09:30 (descending) and 21:30 (ascending) for MetOp-A.

The SeaWinds-on-QuikSCAT scatterometer transmits at Ku-band (13.4 GHz) and has a rotating pencil-beam
design with an 1800 km wide swath [Tsai et al., 2000]. The pencil-beam design has a complicated observa-
tion geometry that varies across the swath (due to the changing azimuth angle of the observations with
respect to the satellite ground track), resulting in a varying performance that is reduced in the nadir region
and far swath. The ASCAT-on-MetOp-A scatterometer transmits at C-band (5.3 GHz) and has a dual-swath
fan-beam configuration with two 550 km wide swaths separated by a nadir gap of about 700 km [Figa-Sal-
da~na et al., 2002]. The fan-beam configuration ensures a fixed observation geometry in terms of azimuth,
but the look angle of the observations varies across the swath.

3.2. Processing Steps
Instrument power measurements are calibrated, converted to normalized radar cross-section, and spatially
aggregated. This process involves averaging individual backscatter measurements and resampling them
into an along-track, cross-track swath grid of wind vector cells (WVCs) for wind retrieval [Figa-Salda~na et al.,
2002; Hoffman and Leidner, 2005; Dunbar et al., 2006]. The true spatial resolution of the wind field is about
twice the grid size. Such oversampling by a factor of two is common in radar applications.

The next level of processing carries out wind retrieval, ambiguity removal, and quality control. Wind
retrieval involves an inversion step [Stoffelen and Portabella, 2006] followed by a spatial filtering procedure
for ambiguity removal [Stiles et al., 2002; Stoffelen et al., 2000]. The inversion step employs an empirically
derived geophysical model function (GMF) to relate backscatter, obtained in the local observation geome-
try, to the equivalent neutral-stability vector wind at a height of 10 meters. Due to the nature of radar back-
scatter from the ocean surface, this procedure usually provides multiple solutions referred to as
ambiguities. An ambiguity removal algorithm, imposing spatial constraints, is applied to produce a spatially
consistent field of winds, selected from the solution sets provided at each WVC.

Quality control procedures include checking that there is enough good data for wind retrieval, and flags a
WVC if the signal is corrupted by the presence of land, ice, rain or when the retrieved wind vector is incon-
sistent with the GMF.

3.3. Wind Products
The following wind products are compared in this paper:

ASCAT-12.5 and ASCAT-25: Spatial aggregation of radar cross-section data was carried out by EUMETSAT to
12.5 and 25 km WVCs, respectively. The cross-section data are calculated by resampling measurements,
through spatial averaging individual backscatter measurements. The weighting function chosen for the
averaging is a two-dimensional Hamming window, designed to provide noise reduction [Figa-Salda~na et al.,
2002]. Wind retrieval is carried out at the Royal Netherlands Meteorological Institute (KNMI) using the
ASCAT Wind Data Processor (AWDP; www.knmi.nl/scatterometer). The GMF used in the AWDP is CMOD5.n
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[Portabella and Stoffelen, 2009] and ambiguity removal is carried out using a two-dimensional variational
method (2DVAR) [Vogelzang et al., 2009].

SeaWinds-NOAA is a near-real-time product on a 25 km grid that was issued by the National Oceanic and
Atmospheric Administration (NOAA) and is described in detail by Hoffman and Leidner [2005]. Spatial aggre-
gation uses a centroid binning method that assigns a backscatter slice to only one WVC; all backscatter sli-
ces of the same azimuth and polarization in a WVC are averaged into one value before the wind retrieval.
The GMF is QSCAT-1 and the spatial filtering for ambiguity removal is carried out using a median filter fol-
lowed by a sophisticated algorithm called Direction Interval Retrieval with Thresholded Nudging (DIRTH)
[Stiles et al., 2002]. Rain-flagging is carried out using the MUDH algorithm [cf. Weissman et al., 2012].

SeaWinds-KNMI is a reprocessing of SeaWinds-NOAA cross-section data by KNMI using improved (rain) qual-
ity control [Portabella and Stoffelen, 2002]. The spatial aggregation and WVC grid size (25 km) is the same as
for SeaWinds-NOAA. The GMF is NSCAT-2, and the retrieved ambiguous wind vector PDF is fully represented
in the 2DVAR ambiguity removal by using the Multiple Solution Scheme (MSS) [Portabella and Stoffelen,
2004] resulting in high quality winds [Vogelzang et al., 2009, 2011]. Ebuchi [2013] evaluated this processing
applied to the very similar OceanSat-2 scatterometer.

QSCAT-12.5 (version 3) is the recently released science data product on a 12.5 km grid produced by the
NASA Jet Propulsion Laboratory (JPL). It is the result of reprocessing the entire SeaWinds on QuikSCAT data
set with many algorithm improvements [Fore et al., 2013]. Spatial aggregation uses an overlap binning
method that increases the number of backscatter slices being assigned to the same WVC. The GMF is
Ku2011 and ambiguity removal is carried out using a median filter followed by an improved DIRTH algo-
rithm. Rain-flagging is carried out using the IMUDH algorithm [cf., Weissman et al., 2012].

Collocated NWP forecasts interpolated in space and time to the scatterometer grid are packaged with each
product in the original data set. The SeaWinds-NOAA and QSCAT products are collocated with NWP fore-
casts from the National Center for Environmental Prediction (NCEP) model. The ASCAT and SeaWinds-KNMI
products are collocated with NWP forecasts from the European Centre for Medium range Weather Forecast-
ing (ECMWF) model.

3.4. Spatial Processing Differences
Spatial processing of the radar backscatter affects the spatial statistics. The most important differences in
processing that are expected to affect spatial statistics are:

i. Backscatter averaging. Backscatter data are averaged locally and the fundamental footprints extend the
averaging box (i.e., WVC). This implies spatial filtering and noise reduction, but also causes signal to be
lost. Different local spatial filtering of backscatter data thus causes signal and noise changes. For ASCAT,
the differences between collocated winds obtained from box-car and Hamming filtered backscatter data
over open sea have been reviewed and found negligible [Verhoef and Stoffelen, 2013].

ii. Scatterometer geometry and related ambiguity removal filtering (AR). ASCAT (and its forerunner ERS scatter-
ometer) inversion generally provides two opposing solutions as input to the AR, from which AR may
select one without much spatial compromise; it is estimated that in <0.5% of cases selection errors occur
[Stoffelen et al., 2000]. On the other hand, for QuikSCAT the ambiguous solutions can be noisy, skew, and
broad, such that either the full wind vector PDF (MSS) [Portabella and Stoffelen, 2004] or solutions in wind
direction windows are used at each WVC (DIRTH) [Stiles et al., 2002]. QuikSCAT AR uses many wind direc-
tions to select from, which obviously requires more complex spatial filtering than for ASCAT [Portabella
and Stoffelen, 2004]. Imposing spatial constraints to produce a spatially consistent field of winds from the
solution (window) sets provided at each WVC suppress the effect of the noisy, skew, and broad minima
appearing in QuikSCAT retrievals, but may affect the physical integrity of the local information contained
in the local backscatter fields. The subsequent filtering artifacts have been shown in spatial maps [Stoffe-
len et al., 2008], spectral analysis, and buoy validations [Vogelzang et al., 2011].

iii. Rain contamination. Rain affects the radar backscatter measured by scatterometers in several ways [Weiss-
man et al., 2012]. The higher the radar frequency, the larger the impact rain has on wind retrieval. As a
result, rain is a larger source of error for winds derived from Ku-band instruments (SeaWinds) than from
C-band instruments (ASCAT). At Ku-band, the backscatter from the rain is approximately the same for all
observing angles. As a result, there is a tendency for wind vectors retrieved in heavy rain to be aligned in
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the cross-track direction
(just as a wind blowing
across the swath). Due to
the way the median filter
works, this can influence
wind retrievals in neighbor-
ing rain-free WVCs [Draper
and Long, 2002]. Moreover,
the more complex spatial AR
may aggravate errors in
rainy areas, such as over the
west Pacific warm pool. In
contrast, the lower ASCAT
radar frequency results in
winds that are much less
affected by rain, although
they remain sensitive to sec-
ondary effects, such as the
splashing of raindrops on
the surface and local wind
variability (wind down-
bursts) when rain is heavy
and wind is low. These sec-

ondary effects of rain may complicate ambiguity removal [Portabella et al., 2012] (W. Lin et al., ASCAT
wind quality control near rain, submitted to Transactions on Geoscience and Remote Sensing, 2014).

Besides the main effects above, any processor setting that leads to different wind vectors, different rejec-
tions, and/or different ARs may obviously lead to modified spatial characteristics. However, all processors
have been optimized to provide optimal winds at each WVC and effects of such ancillary processor settings
are expected to be minor within the global context of this paper.

3.5. SST and Rain-Rates
Rain-rates and sea surface temperatures were obtained from the Tropical Rainfall Measuring Mission’s
(TRMM) Microwave Imager (TMI) and used to characterize the local environment. The TMI data were
obtained from the Remote Sensing Systems web site (http://www.ssmi.com). SeaWinds Radiometer (SRAD)
rain-rates, derived from rather coarse SeaWinds measurements of the ocean radiometric brightness temper-
ature [Laupattarakasem et al., 2005], are also used.

4. Study Area and Methods

4.1. Tropical Pacific
Figure 1 shows sea surface temperatures (SST) in the Tropical Pacific between latitudes 30�S and 30�N, with
monthly QuikSCAT ocean wind vectors (obtained from the Remote Sensing Systems web site) superim-
posed. The convergence zones labeled in the figure play a central role in the organization of tropical circula-
tions and generation of tropical weather systems. The months of August (top) and March (bottom) are
shown in order to identify all the main convergence zones. They are the InterTropical Convergence Zone
(ITCZ), the western North Pacific Monsoon Trough (MT), the South Pacific Convergence Zone (SPCZ), and
the Southern ITCZ (S-ITCZ). Also labeled is the East Pacific Warm Pool (EPWP).

The ITCZ extends across the Pacific but in the east Pacific remains north of 4�N throughout the year. As
boreal summer progresses, the ITCZ migrates north, merging with the EPWP in the eastern Pacific and with
the MT in the western Pacific. The axis of the MT usually emerges from east Asia in boreal summer at about
20–25�N and extends southeastward to a terminus southeast of Guam at (13�N, 145�E). Its oceanic portion
shows considerable variability in position, shape, and orientation throughout the monsoon season (June–
November) [Lander, 1996]. The area near the trough axis is a favorable region for the genesis of tropical
cyclones and monsoon depressions.

Figure 1. Sea surface temperatures and monthly ocean winds in the Tropical Pacific in (top)
August and (bottom) March. Labels identify the East Pacific Warm Pool (EPWP) and the
major convergence zones: Monsoon Trough (MT), Inter-Tropical Convergence Zone (ITCZ),
South Pacific Convergence Zone (SPCZ), and Southern-ITCZ (SITCZ).
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As boreal summer wanes, the ITCZ migrates southward and across the equator to merge with the SPCZ. As
the ITCZ migrates southward, so too does the west Pacific warm pool, defined as the waters enclosed by
the 28�C isotherm [Wyrtki, 1989], an empirical threshold for the onset of deep convection. The warm pool
spans the western areas of the equatorial Pacific to the eastern Indian Ocean. The high SST in the warm
pool creates an environment favorable to the self-organization of individual convection cells into Mesoscale
Convective Systems (MCSs) with scales �300 to 400 km [Houze, 2004]. These can self-organize into super-
clusters �1000–3000 km), which can in turn organize into a large-scale envelope known as the Madden-
Julian Oscillation (�10,000 km).

The SPCZ is present all year, starting parallel to the equator in the western Pacific before changing direction
southeastward across the Pacific. Convective activity in the SPCZ is greatest during austral summer, so that
from November to April frequent and strong convective activity occurs near and just south of the equator.
During boreal spring the area of strongest convergence rapidly moves northward across the equator and
concentrates near the confluence of the ITCZ and MT (10–20�N) from May to October, see Figure 1 in Zhu
and Wang [1993].

The southern boundary of the ITCZ in the east Pacific marks the location of a strong SST front that forms
the northern boundary of a tongue of cool SST, known as the east Pacific cold tongue. The southern bound-
ary of the cold tongue is formed by another strong SST front. The intensity and spatial extent of the cold
tongue varies seasonally [Mitchell and Wallace, 1992]. During the warm season (January–June), the ITCZ is
nearest the equator and the cold tongue falls to minimum intensity and spatial extent. During the wet sea-
son (typically March–April) deep convection and rain enter the region. During the cold season (July–Decem-
ber), the ITCZ is furthest north and the cold tongue expands, reaching maximum intensity and spatial
extent in August–September.

The S-ITCZ emerges south of the equator in the east Pacific from March to April [Masunaga and l’Ecuyer,
2010, and references therein]. This convergence zone is caused by the deceleration of southerly surface
winds as they pass over the SST front on the southern boundary of the cold tongue [Liu, 2002].

4.2. Study Area
The study area is shown in Figure 2 and is subdivided into three latitude bands (North, Equatorial, South)
and three longitude bands (West, Central, and East Pacific). These regions isolate rainy from dry regions, as
can be inferred from the latitude-time plots of monthly and zonally averaged rain-rates shown in Figure 3;
also shown in that figure are monthly and zonally averaged latitude-time plots of SST. (The data for these
figures were obtained from TMI data sets downloaded from the Remote Sensing Systems web site.) The
nomenclature and latitude-longitude limits of the regions are given in Table 1.

4.3. Methods
The wind vectors used in this study are the most likely (‘‘selected’’) solutions obtained from the processing
procedure applied to each wind product. Samples were selected along-swath: WVCs in the same sample all
have the same cross-swath index. Each sample was checked to ensure that only those WVCs falling inside
the region of interest were used. For SeaWinds-NOAA and QSCAT-12.5, rain-flagged WVCs were flagged
missing (filtered out) of the calculations. For SeaWinds-KNMI and ASCAT, wind vectors were filtered out if
the KNMI quality control flag or the variational quality control flag was set [KNMI, 2006, 2013]. Samples from
both the ascending and descending passes of the satellite and from the whole swath (including the outer

WP CP EP

 120° E  160° E  160° W  120° W   80° W 

 20° S 

  0°   

 20° N 

Figure 2. The boundaries of the nine geographical regions used in the present study. Nomenclature of the regions and their geographical
limits are given in Table 1.
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and nadir parts of the SeaWinds swath) were used to construct velocity increment PDFs and calculate struc-
ture functions. Note that WVCs in the outer swath were not used in the processing to produce SeaWinds-
KNMI.

Velocity increments are taken between members of each along-track sample after transforming wind vec-
tors into components parallel (La) and perpendicular (Ta) to the satellite track, as indicated by the subscript
a. The subscript a is retained throughout to remind the reader that the structure functions are for one-
dimensional along-track cuts through the near-surface ocean wind field, whereas the theoretical relations in
section 2 assume ensemble averages taken over all directions.

One could easily take samples in the cross-track direction to investigate anisotropic characteristics of the
turbulence. We do not attempt that here for reasons that will become clear below.

Empirical velocity increment PDFs Pr duLað Þ and Pr duTað Þ, where subscript r denotes lag r, were constructed
using all duLaðr; tÞ and duTaðr; tÞ during a calendar month per region and per wind product. Structure func-
tions were calculated after subtracting off the mean velocity increment

dULaðrÞ5
X
duLa

duLaPr duLað Þ;

dUTaðrÞ5
X
duTa

duTaPr duTað Þ;
(10)

DLLaðrÞ5
X
du0La

ðdu0LaÞ2Prðdu0LaÞ;

DTTaðrÞ5
X
du0Ta

ðdu0TaÞ2Prðdu0TaÞ;
(11)

where du0LaðrÞ5duLaðrÞ2dULaðrÞ and
du0TaðrÞ5duTaðrÞ2dUTaðrÞ.

Figure 3. Latitude-time plots of monthly and zonally averaged (top) rain-rates and (bottom) sea surface temperatures measured by the TRMM Microwave Imager (TMI) during the study
period.

Table 1. Study Regionsa

West Pacific Central Pacific East Pacific

140�E–180�E 180�E–220�E 220�E–260�E

North WPN CPN EPN
5�N–10�N (rainy) (rainy) (rainy)
Equatorial WPE CPE EPE
5�S–5�N (rainy) (dry) (dry)
South WPS CPS EPS
10�S–5�S (rainy) (dry) (dry)

aGeographical limits and nomenclature for the regions shown
in Figure 2.
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4.4. Accuracy
Vogelzang et al. [2011] show that the
scatterometer zonal and meridional
wind components, u and v, have an
accuracy of about 0.7 m/s (at the 1-r
level). The same accuracy holds for the
along and cross-track components, uL

and uT , so DuL5DuT � 0.7 m/s. The error
variance in the differences duLa and duTa

is estimated twice as large, so DðduLaÞ5
DðduTaÞ � 1.0 m/s. The error in the
square of the velocity increment is that
value squared, so DðduLaÞ25DðduTaÞ2 �
1.0 m2/s2. Finally, the error in the
second-order structure functions is D
DLLa5DDTTa � 1:0N21=2 m2/s2, with N
the number of differences averaged
over.

The value of N differs per lag, per region,
and per wind product. Typically, N
decreases as r increases. The equatorial
longitude bands are twice as large as the
Northern and Southern bands. ASCAT-
12.5 has half the grid size as the other
products, so it has four times as many
points in a given region and a given
period.

For lag size 1 and July 2009, the value of
N ranges from 729,249 (ASCAT-12.5 in
EPE) to 61,811 (ASCAT-25 in WPS), so D
DLLa and DDTTa range from 0.001 to
0.004 m2/s2. For a range of 300 km, the
value of N ranges from 529,290 (ASCAT-
12.5 in EPE) to 22,574 (ASCAT-25 in
WPS), so DDLLa and DDTTa range from
0.001 to 0.007 m2/s2. It is therefore safe
to say that the errors in the results

shown in the next section are negligible with respect to the scale of the figures, except for the last points at
the highest lags.

The above error estimates are for directly calculated structure functions, whereas the results presented in
this paper are calculated according to (10) and (11) and thus contain binning errors. However, the errors
in the directly calculated structure functions are negligible (look ahead to Figure 5), so the accuracy of the
results of (10) and (11) can be estimated by comparing with directly calculated structure functions. This
shows that the results are accurate up to a few percent.

5. Results

5.1. Velocity Increment PDFs
By definition, the second-order structure function is the variance of velocity increments; that is, they mea-
sure the width of the velocity increment PDF. Therefore, it is instructive to begin by comparing some PDFs.
Figure 4 shows semilog plots of the longitudinal and transverse PDFs Pr duLað Þ (top) and Pr duTað Þ (bottom)
for July 2009 at scale r 5 200 km. The plots on the left are for WPE, a rainy region, and the plots on the right
for EPE, a dry region. There are five curves in each panel, one for each wind product, constructed from
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Figure 4. Longitudinal and transverse probability distributions for the equato-
rial regions in the west and east Pacific (July 2009): (top) Pr duLað Þ and (bottom)
Pr duTað Þ; (left) WPE and (right) EPE. July area-averaged SRAD rain-rate for WPE is
3.3 mm/hr and for EPE is 0.1 mm/hr.
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between 105 (SeaWinds-KNMI) and 106

(QSCAT-12.5) velocity increments. The figure
shows that PDFs are wider in WPE than in
EPE. This is because convergence, diver-
gence, and vorticity are more energetic in
WPE due to strong convective activity over
warm SST, whereas in EPE the opposite
holds because cool SST suppresses convec-
tive activity. It can also be seen that
SeaWinds-KNMI PDFs are always narrower
than SeaWinds-NOAA. This is because the
SeaWinds-KNMI processing flags used here
result in more wind retrievals as being of
poor quality, thus producing narrower PDFs.

Comparing EPE PDFs (both longitudinal and
transverse) across wind product shows only
small differences between ASCAT and Sea-
Winds. In WPE, however, there are signifi-
cant differences. SeaWinds has narrower
longitudinal PDFs. Most likely this is due to
the fact that when it rains, Ku-band systems
see rain and not wind [Weissman et al.,
2012]. Since SeaWinds will not sample the
wind as well in rainy areas its Pr duLað Þ will be
narrower. QSCAT-12.5 and SeaWinds-NOAA
have wider transverse PDFs. We cannot yet
be sure why. The same is true in heavy rain
months of all regions. This could be contrib-
uted by a diurnal effect, but unfortunately
the satellite crossing times of MetOp-A and
QuikSCAT are not spaced far enough apart
to allow a definite conclusion one way or
the other. Another possibility is that the Sea-
Winds PDFs contain contributions from
unflagged rain contaminated wind retriev-

als. As discussed in section 3.4, the median filter used by SeaWinds can, in heavy rain, influence wind
retrievals in neighboring rain-free WVCs. SeaWinds-KNMI, whose transverse PDFs are more in line with
ASCAT, may be filtering out such contamination with its quality control. Further work is needed to be sure.

5.2. Structure Functions
Figure 5 shows how the widths of the PDFs (DLLa and DTTa) change with r for the WPE and EPE regions.
Structure function slopes and magnitude (TKE) vary per wind product, per wind component, and per region.
For reference, structure functions for the collocated ECMWF-12.5 and NCEP-12.5 winds are included in the
figure. These have the steepest slopes and lowest TKE, dropping away from the scatterometer structure
functions starting at about 500 km. This drop in TKE relative to scatterometer winds is well known from
spectral studies (see Figure 2 in Bourassa et al. [2010]). It must be added that the difference is somewhat
exaggerated by the fact that the interpolated ECMWF winds in the ASCAT wind products are generated
from coarse model output (grid size about 60 km). The ASCAT wind products used here are operational
near-real-time products generated since 2007, for which comparison with ECMWF predictions on this grid is
part of the routine monitoring.

Figure 5 is partitioned into three ranges by vertical lines drawn at 50 and 300 km. For scales larger than
300 km, scatterometer and NWP structure functions are similar, while for scales <300 km scatterometer
winds resolve more structure than NWP winds. Moreover, the 300 km and below range are the scales occu-
pied by mesobeta scale weather phenomena such as squall lines and mesoscale convective systems [Houze,
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Figure 5. Structure functions for the equatorial regions in the west and
east Pacific in July: (left) WPE and (right) EPE, (top) longitudinal, and (bot-
tom) transverse. Vertical lines are drawn at 50 and 300 km, the range used
to compare structure functions.
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2004]. At scales <50 km there are artifacts: ASCAT slopes steepen and SeaWinds-NOAA slopes flatten. The
behavior of the ASCAT slopes at these scales is believed due to the spatial averaging carried out during
EUMETSAT processing of the backscatter data. The flattening of the SeaWinds-NOAA slope is characteristic
of noise [cf. Vogelzang et al., 2011]. It is also interesting to note that over the 50–300 km range, wind prod-
uct structure functions do not cross each other. This means that if the PDFs were plotted at any r in that
range, the resulting figure would look, after rescaling widths, just like Figure 4. Therefore, the best range of
scales to make comparisons is the 50–300 km range.

Two features of the scatterometer structure functions in Figure 5 that are easy to identify are that their
slopes vary and that they tend to fall into one of two groups based on their TKE. Closer inspection shows
that in both regions the higher longitudinal TKE group is composed of ASCAT-12.5 and ASCAT-25, the
higher transverse TKE group is composed of QSCAT-12.5 and SeaWinds-NOAA, and SeaWinds-KNMI always
has the lowest TKE. Further inspection also shows that in EPE ASCAT-25 drops away from ASCAT-12.5 in
both longitudinal and transverse TKE.

Remarks

i. The small SeaWinds-KNMI TKE is due to the stringent spatial filtering and quality control made necessary
by the more complex SeaWinds ambiguity structure [Portabella and Stoffelen, 2006]. Even though the
more stringent processing results in the smallest TKE, Ebuchi [2013] has found that this type of processing
maintains excellent verification with 10 min mean moored buoy wind vectors for SeaWinds-type
scatterometers.

ii. ASCAT-25 structure functions start to drop away from ASCAT-12.5 in both WPE and EPE. The reduction is
consistent with the spectral analysis by Vogelzang et al. [2011], who traced the difference to the spatial
aggregation of backscatter data. However, at present, we have no explanation for the difference in the
scale at which TKE starts to drop: at 100 km in WPE and at 300 km in EPE.

iii. In EPE there is a significant gap in longitudinal TKE between ASCAT-12.5 and SeaWinds. Since EPE in July
is dry, this cannot be attributed to rain contamination. One possible explanation is that it is a diurnal
effect. Another possibility is that the reduced TKE results from the more complex spatial filtering required
in SeaWinds processing.

In summary, the variability in structure function slopes and magnitudes shown in Figure 5 reflect differences
in flow regime, instrument design, processing, and quality control. In addition to the variability already dis-
cussed, structure function characteristics vary seasonally. After inspecting structure functions for other
months, we decided to compare the 1080 structure functions (five wind products, longitudinal and trans-
verse components, nine regions, and 12 months), using the slopes and TKE at 300 km. As a check on the
reasonableness of the results, we compare vorticity-to-divergence ratios.

5.3. Structure Function Slopes
Structure function slopes are estimated from straight-line fits over the 50–300 km range to DLLa and DTTa in
log-log space. The longitudinal (bLa) and transverse slopes (bTa) are shown as a function of time in Figures 6
and 7, respectively. For reference, a horizontal line is drawn at the classical turbulence value 2/3. Error bars
are drawn at plus minus 1 root-mean-square deviation. The error on each structure function value is small
(section 4.4) and hence the root-mean-square error on each slope is really indicating how well the structure
function follows a simple power law. The results indicate that structure functions are indeed well character-
ized by a power law whose value depends on region, season, instrument, and processing.

For each region, wind product time series are approximately parallel (more so for bLa than bTa), shifted verti-
cally from one another by a significant amount. This can be seen more clearly in the scatter plots shown in
Figure 8. In that figure, slopes bLa (top) and bTa (bottom) are referenced against those for ASCAT-12.5 (left)
and QSCAT-12.5 (right). Slopes above (below) the diagonal are steeper (flatter) than the referenced slope.

First consider the scatter plots for bLa. The ASCAT intracomparison (top left) shows that ASCAT-25 is steeper
than ASCAT-12.5 by roughly 0.2 everywhere. This is interesting since both products are processed by
AWDP, with the main difference being the backscatter aggregation over respectively about 25 and 50 km—
which appears to have a substantial effect on the slopes. On the other hand, the spatial characteristics of
2DVAR are different as well; and this could affect the flagging frequency. The SeaWinds intracomparison
(top right) shows that SeaWinds-KNMI has steeper and SeaWinds-NOAA flatter slopes than QSCAT-12.5. This
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is not surprising. Finally, comparing QSCAT-12.5 and ASCAT-12.5 (top left) shows that QSCAT-12.5 is steeper
by roughly 0.4 everywhere. The surprise here is that the difference is so large. The reason for this is not fully
clear, but could be due to the constrained spatial filtering implied by the SeaWinds ambiguity removal. One
final point to draw attention to is ASCAT-12.5 has the smallest longitudinal slopes, independent of region
and month.

Next consider the scatter plots of bTa. The ASCAT intracomparison (bottom left) shows that for the trans-
verse component ASCAT-25 is also steeper than ASCAT-12.5 by about 0.2 on average, but with a larger
spread than for bLa. The SeaWinds intracomparison (bottom right) shows that SeaWinds-KNMI is steeper
and SeaWinds-NOAA flatter than QSCAT-12.5. This is the same as for bLa, but it is interesting that SeaWinds-
KNMI bTa is so much steeper than QSCAT-12.5 (by about 0.4) than for bLa. Finally, comparing QSCAT-12.5
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Figure 6. The longitudinal slope bLa as a function of time.
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and ASCAT-12.5 (bottom left) shows that, in contrast to bLa , QSCAT-12.5 bTa are (mostly) flatter than ASCAT-
12.5. We are unable to offer an explanation for this.

Another diagnostic is to plot bLa versus bTa. This is shown in Figure 9 for all ASCAT (left) and all SeaWinds
(right). The diagonal line bTa5bLa clearly identifies an interesting difference between ASCAT and SeaWinds
slopes. Except for a few cases, ASCAT bTa is greater than bLa, while in the case of SeaWinds-NOAA and
QSCAT-12.5, bTa is less than bLa . It is not clear why this is so. However, note that the results for SeaWinds-
KNMI straddle the diagonal, indicating that in some cases the KNMI reprocessing of the NOAA product
brings SeaWinds structure functions closer into agreement with ASCAT structure functions.

During our investigation, we found an interesting correlation between bLa and SST and plotted in Figure 10.
In this figure, scatter plots of bLa versus SST are shown for ASCAT-12.5 (left) and QSCAT-12.5 (right). When
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Figure 7. The transverse slope bTa as a function of time.
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SST exceeds the threshold for onset of
deep convection (about 28�C), bLa rap-
idly falls in value. This implies the
development of small-scale convergent
(ascend) and divergent (downburst)
features in the wind field.

bTa does not have a similar, easily iden-
tified signature as bLa. Figure 11 shows
scatter plots of bTa versus SST; again
only ASCAT-12.5 (left) and QSCAT-12.5
(right) are shown. Due to the complex-
ity of the scatter plot, the equatorial
region is plotted separately (top) from
the combined northern and southern
regions (bottom). In the equatorial
regions, ASCAT slopes are independent

of SST; however, QSCAT slopes show a decrease with SST similar to that shown for bLa in Figure 10 (right).
The bottom plots show that as SST increases beyond 28�C, the distribution of bTa widens—ranging
between about 0.6 up to about 1.1. The larger slopes occur in the tropical cyclone season of each hemi-
sphere and hence are probably due to the propagation of tropical cyclones through the region and/or
development of organized tropical convection.

5.4. Turbulent Kinetic Energy
An estimate of the turbulent kinetic energy TKE held in scales <300 km is given by DjjaðrÞ at r 5 300 km.
This will be denoted by D�jja. Figure 12 shows D�LLa (divergent TKE) as a function of time in each region. The

pattern of increasing and decreasing
divergent TKE reflects the locations
and seasonal migrations of the ITCZ,
SPCZ, and S-ITCZ convergence zones
(section 4.1). For example, in the
northern regions, D�LLa increases as
the ITCZ migrates north, and
decreases as it migrates south. Also
in EPS during the short time, the S-
ITCZ appears (March/April), D�LLa rises
to a peak. In all regions and in almost
all months, ASCAT winds have larg-
est and SeaWinds-KNMI smallest
D�LLa.

Figure 13 shows D�TTa (vortical TKE) as
a function of time in each region. In
the northern regions, vortical TKE
increases dramatically when the ITCZ
is in a sufficiently northward position
that the coriolis force amplifies back-
ground vorticity. This can be seen in
WPN and CPN: a dramatic increase in
D�TTa at the beginning of boreal
summer (onset of the tropical
cyclone season), and a drop in value
at the end. In contrast to D�LLa, Sea-
Winds has larger values of D�TTa than
ASCAT. In the rainy regions, the dif-
ference is very large during months
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Figure 10. Scatter plots of bLa versus SST: (left) ASCAT-12.5 and (right) QSCAT-
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when convective activity is strong. Strong convective activity implies rain and hence more artifacts in Sea-
Winds retrievals, suggesting that the larger values of D�TTa may be associated with rain artifacts. Lin et al.
(submitted manuscript, 2014) verify ASCAT winds in rainy areas with buoys and find a clear wind signal in
ASCAT. Unfortunately, such study has not been performed yet for QuikSCAT.

Figure 14 provides a summary of the TKE results in scatter plots of D�LLa (top) and D�TTa (bottom), referenced
against ASCAT-12.5 (left) and QSCAT-12.5 (right). Points above (below) the diagonal line indicate more (less)
TKE than the reference. Points in each figure spread out with increasing TKE. In the case of ASCAT intracom-
parisons (left plots), ASCAT-25 TKE is only slightly less than ASCAT-12.5. In the case of SeaWinds intracom-
parisons, SeaWinds-NOAA and SeaWinds-KNMI TKE are both less than QSCAT-12.5, but as TKE increases, the
spread in SeaWinds-KNMI TKE is significantly larger than for SeaWinds-NOAA. The more interesting and
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Figure 12. The longitudinal (divergent) turbulent kinetic energy D�LLa as a function of time.
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intriguing comparison is between QSCAT-12.5 and ASCAT-12.5. QSCAT-12.5 has less divergent TKE than
ASCAT-12.5 (top left), but greater vortical TKE (bottom left). The latter may be associated with rain artifacts.

5.5. Vorticity-to-Divergence
The partitioning of energy between rotational and divergent motions is quantified by the vorticity-to-
divergence ratio. Since we calculate structure functions using separations taken along only one direction, Ra

ðrÞ5DTTaðrÞ=DLLaðrÞ cannot be compared directly with theory. Nevertheless, the averaging over many condi-
tions implies that Ra should yield a qualitatively interesting measure of the ratio of vorticity-to-divergence.

Figure 15 shows a plot of RaðrÞ for regions WPE and EPE, and shows that Ra increases slowly with r. Because
SeaWinds has larger vortical and smaller divergent TKE, it has larger vorticity-to-divergence than ASCAT. In
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Figure 13. The transverse (shear or vortical) turbulent kinetic energy D�TTa as a function of time.
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order to explore the vorticity-to-divergence more conveniently across region and time, we graph
R�a5D�TTa=D�LLa.

Figure 16 shows R�a as a function of time in each region. The horizontal line at R�a51 indicates where vortical
and divergent TKE are equal. The key thing to note in this figure is that ASCAT and SeaWinds are in good
qualitative agreement: vortical energy is enhanced over, or comparable to, divergent energy in the convec-
tively active months of both the west and east Pacific, while the opposite is the case during the dry months
in the dry regions. The difference between QSCAT-12.5 and ASCAT-12.5 in the rainy and especially the west
Pacific regions is large—but is it too large? Recall from section 2.3 that turbulence theory predicts vorticity-
to-divergence values ranging between 3/5 and 3. The graphs in Figure 16 show that R�a ranges between 0.4
and 2.5. Thus all wind products produce reasonable vorticity-to-divergence ratios, despite the noted effects
related to rain artifacts, ambiguity, and spatial filtering.

6. Summary and Conclusions

Second-order along-track structure functions were calculated using wind products derived from radar back-
scatter measurements by ASCAT-on-MetOp-A and SeaWinds-on-QuikSCAT over the tropical Pacific (subdi-
vided into rainy and dry regions) during the 12 month period November 2008 to October 2009. The wind
products from each scatterometer were at two different grid spacings (12.5 and 25 km), and were derived
using different processing and different quality control.
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Longitudinal and transverse
velocity increment PDFs and
structure functions from along-
track differences were used to
illustrate and identify key dif-
ferences between wind prod-
ucts. Detailed comparisons for
all regions and months were
made using structure function
slopes, turbulent kinetic
energy, and vorticity-to-
divergence ratios estimated
for the 50–300 km range of
scales.

Qualitatively, results were in
excellent agreement across
wind product. All quantities
from all wind products rose and
fell together in each region,

consistent with regional and seasonal dynamics. This gives confidence that the regionally and seasonally
varying characteristics of turbulence are being identified correctly. An interesting correlation was found
between the longitudinal structure function slopes and the monthly, area-averaged SST: when the mean SST
exceeds about 28�C (the threshold for onset of deep convection), the longitudinal slope decreases rapidly
(Figure 10), implying the development of small-scale convergent (ascend) and divergent (downburst) features
in the wind field. The transverse slope showed a less clear connection with SST.

Quantitatively, results varied across wind product. The main difference between the two ASCAT products
was that ASCAT-25 slopes were steeper than ASCAT-12.5 by about 0.2 everywhere (Figure 8). This is
believed due to the backscatter aggregation, which is over about 50 and 25 km, respectively. Differences
between the SeaWinds products were more and larger than between ASCAT products. This is not surprising
since the processing and quality control used to produce these products differed. As expected, relative to
QSCAT-12.5, SeaWinds-NOAA slopes were a little flatter and SeaWinds-KNMI slopes steeper—more so for
transverse slopes (by about 0.3) than longitudinal slopes (about 0.1).

The main interest was in comparing ASCAT-12.5 and QSCAT-12.5, as these are the finest ASCAT and Sea-
Winds products. QSCAT-12.5 longitudinal slopes were found to be much steeper than ASCAT-12.5 (by about
0.4 everywhere), while the transverse slopes were typically a little flatter (by about 0.1). As spatial filtering
has the effect of steepening the structure function, it is proposed that the reason for the steeper QSCAT-
12.5 longitudinal slopes is the constrained spatial filtering implied by the more difficult SeaWinds ambiguity
removal.

We recall the results of Ebuchi [2013], which for Oceansat-2 data reveal SeaWinds-KNMI as the better verify-
ing product with local buoys, despite its 25 km WVC grid. Moreover, ASCAT-12.5 verifies better with buoys
than any QuikSCAT product does [Vogelzang et al., 2011]. However, these comparisons may not be conclu-
sive and we conclude that at present it is difficult to identify a universal scaling exponent for mesoscales
turbulence in ocean winds using current scatterometer data. However, this does not mean that the data
cannot be used to address fundamental questions on turbulence in the atmosphere. As we have shown in a
companion to this paper, third-order statistics from these same wind products can be used to identify the
direction of the energy cascade [King et al., 2015].

Comparison of TKE showed striking differences between QSCAT-12.5 and ASCAT-12.5. Differences increased
with increasing TKE. Two possible reasons for this were already mentioned when discussing the PDFs. One
is that the difference is real and related to diurnal effects. This possibility can be assessed when data from
the recently launched RapidSCAT mission becomes available. A second possibility is that the difference is a
result of the sensitivity of Ku-band radar to rain. For example, it is known that rain can give rise to artificial
strong zonal winds in SeaWinds wind retrievals [Chelton and Freilich, 2005; Hoffman and Leidner, 2005]. For
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the along-swath track analysis in this paper, this results in an additional contribution to the transverse com-
ponent of the structure functions and hence wider transverse PDF and larger transverse TKE.

The work reported here has shown that structure functions allow a detailed investigation and comparison
of regional winds. In future, it would be valuable to apply these methods to study isolated synoptic cases
and learn their signatures (e.g., mesoscale convective systems, the Madden-Julian Oscillation, tropical cyclo-
nes, etc.), and to investigate ocean winds in regions of special interest (e.g., Indian Ocean, Kuroshio, Gulf
Stream, Southern Ocean, etc.).

In closing, we emphasize that the differences between ASCAT-12.5 and QSCAT-12.5 bring up the same
questions: are the differences in results due to diurnal variations, or are they due to unflagged rain-contami-
nation? Further work is needed to resolve this.
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Figure 16. Time series of R�a5D�TTa=D�LLa , a measure of the ratio of vorticity-to-divergence.
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