1,686 research outputs found
COMPLEXO: identifying the missing heritability of breast cancer via next generation collaboration
published_or_final_versio
A three-protein biomarker panel assessed in diagnostic tissue predicts death from prostate cancer for men with localized disease
Only a minority of prostate cancers lead to death. Because no tissue biomarkers of aggressiveness other than Gleason score are available at diagnosis, many nonlethal cancers are treated aggressively. We evaluated whether a panel of biomarkers, associated with a range of disease outcomes in previous studies, could predict death from prostate cancer for men with localized disease. Using a case-only design, subjects were identified from three Australian epidemiological studies. Men who had died of their disease, cases (NÂ =Â 83), were matched to referents (NÂ =Â 232), those who had not died of prostate cancer, using incidence density sampling. Diagnostic tissue was retrieved to assess expression of AZGP1, MUC1, NKX3.1, p53, and PTEN by semiquantitative immunohistochemistry (IHC). Poisson regression was used to estimate mortality rate ratios (MRRs) adjusted for age, Gleason score, and stage and to estimate survival probabilities. Expression of MUC1 and p53 was associated with increased mortality (MRR 2.51, 95% CI 1.14-5.54, PÂ =Â 0.02 and 3.08, 95% CI 1.41-6.95, PÂ =Â 0.005, respectively), whereas AZGP1 expression was associated with decreased mortality (MRR 0.44, 95% CI 0.20-0.96, PÂ =Â 0.04). Analyzing all markers under a combined model indicated that the three markers were independent predictors of prostate cancer death and survival. For men with localized disease at diagnosis, assessment of AZGP1, MUC1, and p53 expression in diagnostic tissue by IHC could potentially improve estimates of risk of dying from prostate cancer based only on Gleason score and clinical stage
Multivariable And Vector Calculus (Main Stream)
Exam paper for first semester Multivariable And Vector Calculus(Main Stream
Multivariable And Vector Calculus (Pure Stream)
Exam paper for first semester Multivariable And Vector Calculus(Pure Stream
Recommended from our members
Surrounding Greenness and Biological Aging Based on DNA Methylation: A Twin and Family Study in Australia.
BACKGROUND: High surrounding greenness has many health benefits and might contribute to slower biological aging. However, very few studies have evaluated this from the perspective of epigenetics. OBJECTIVES: We aimed to evaluate the association between surrounding greenness and biological aging based on DNA methylation. METHODS: We derived Horvath's DNA methylation age (DNAmAge), Hannum's DNAmAge, PhenoAge, and GrimAge based on DNA methylation measured in peripheral blood samples from 479 Australian women in 130 families. Measures of DNAmAge acceleration (DNAmAgeAC) were derived from the residuals after regressing each DNAmAge metric on chronological age. Greenness was represented by satellite-derived Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) metrics within 300-, 500-, 1,000-, and 2,000-m buffers surrounding participant addresses. Greenness-DNAmAgeAC associations were estimated using a within-sibship design fitted by linear mixed effect models, adjusting for familial clustering and important covariates. RESULTS: Greenness metrics were associated with significantly lower DNAmAgeAC based on GrimAge acceleration, suggesting slower biological aging with higher greenness based on both NDVI and EVI in 300-2,000m buffer areas. For example, each interquartile range increase in NDVI within 1,000m was associated with a 0.59 (95% CI: 0.18, 1.01)-year decrease in GrimAge acceleration. Greenness was also inversely associated with three of the eight components of GrimAge, specifically, DNA methylation-based surrogates of serum cystatin-C, serum growth differentiation factor 15, and smoking pack years. Associations between greenness and biological aging measured by Horvath's and Hannum's DNAmAgeAC were less consistent, and depended on neighborhood socioeconomic status. No significant associations were estimated for PhenoAge acceleration. DISCUSSION: Higher surrounding greenness was associated with slower biological aging, as indicated by GrimAge age acceleration, in Australian women. Associations were also evident for three individual components of GrimAge, but were inconsistent for other measures of biological aging. Additional studies are needed to confirm our results. https://doi.org/10.1289/EHP8793
Assessment of Hydration Thermodynamics at Protein Interfaces with Grid Cell Theory
Molecular
dynamics simulations have been analyzed with the Grid
Cell Theory (GCT) method to spatially resolve the binding enthalpies
and entropies of water molecules at the interface of 17 structurally
diverse proteins. Correlations between computed energetics and structural
descriptors have been sought to facilitate the development of simple
models of protein hydration. Little correlation was found between
GCT-computed binding enthalpies and continuum electrostatics calculations.
A simple count of contacts with functional groups in charged amino
acids correlates well with enhanced water stabilization, but the stability
of water near hydrophobic and polar residues depends markedly on its
coordination environment. The positions of X-ray-resolved water molecules
correlate with computed high-density hydration sites, but many unresolved
waters are significantly stabilized at the protein surfaces. A defining
characteristic of ligand-binding pockets compared to nonbinding pockets
was a greater solvent-accessible volume, but average water thermodynamic
properties were not distinctive from other interfacial regions. Interfacial
water molecules are frequently stabilized by enthalpy and destabilized
entropy with respect to bulk, but counter-examples occasionally occur.
Overall detailed inspection of the local coordinating environment
appears necessary to gauge the thermodynamic stability of water in
protein structures
Rational design of biosafe crop resistance to a range of nematodes using RNA interference
Double stranded RNA (dsRNA) molecules targeting two genes have been identified that suppress economically important parasitic nematode species of banana. Proteasomal Alpha Subunit 4 (pas-4) and Actin-4 (act-4) were identified from a survey of sequence databases and cloned sequences for genes conserved across four pests of banana, Radopholus similis, Pratylenchus coffeae, Meloidogyne incognita and Helicotylenchus multicinctus. These four species were targeted with dsRNAs containing exact 21 nucleotide matches to the conserved regions. Potential off-target effects were limited by comparison to Caenorhabditis, Drosophila, rat, rice and Arabidopsis genomes. In vitro act-4 dsRNA treatment of R. similis suppressed target gene expression by 2.3 fold, nematode locomotion by 66 ± 4% and nematode multiplication on carrot discs by 49 ± 5%. The best transgenic carrot hairy root lines expressing act-4 or pas-4 dsRNA reduced transcript message abundance of target genes in R. similis by 7.9 fold and 4 fold and nematode multiplication by 94 ± 2% and 69 ± 3%, respectively. The same act-4 and pas-4 lines reduced P. coffeae target transcripts by 1.7 and 2 fold and multiplication by 50 ± 6% and 73 ± 8%. Multiplication of M. incognita on the pas-4 lines was reduced by 97 ± 1% and 99 ± 1% while target transcript abundance was suppressed 4.9 and 5.6 fold. There was no detectable RNAi effect on non-target nematodes exposed to dsRNAs targeting parasitic nematodes. This work defines a framework for development of a range of non-protein defences to provide broad resistance to pests and pathogens of crops
- âŠ