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Question 1 [5]

(1.1) Define clearly what is meant by saying “f(x, y) is continuous at the point (a, b)”. (2)

(1.2) Is the function

f(x, y) =















2xy

x2 + 2y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

continuous at (0, 0)? (3)
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Question 2 [3]

Show that a differentiable function f decreases most rapidly at (x, y) in the direction opposite to the
gradient vector, that is, in the direction −∇f(x, y).
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Question 3 [8]

Consider the volume represented by the following triple integral:

V =

[

∫

2

−2

∫

√
4−x2

−
√
4−x2

∫

√
4−x2−y2

−
√

4−x2−y2
dz dy dx

]

−
[

∫

1

−1

∫

√
1−x2

−
√
1−x2

∫

√
1−x2−y2

−
√

1−x2−y2
dz dy dx

]

(3.1) Explain, in words, the represented volume. (1)

(3.2) Rewrite the first term only in the order dx dz dy. (2)
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(3.4) Rewrite V in spherical coordinates using only one triple integral. (2)

(3.4) Rewrite V in cylindrical coordinates. (3)
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Question 4 [5]

A circular cylindrical hole of radius 1 is drilled through the centre of a sphere with radius 2. Sketch
the resulting solid in an appropriate orientation, set up a triple integral in cylindrical coordinates
representing the volume of the solid (using ONLY one triple integral) and calculate this volume.
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Question 5 [4]

Rewrite the following triple integral in spherical coordinates:

∫

1

0

∫

√
4−x2

√
3x

∫

√
4−x2−y2

√
x2+y2

dz dy dx
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Question 6 [5]

Use an appropriate change of variable to evaluate the double integral

∫∫

R

cos

(

x− y

x+ y

)

dA

where R is in the first quadrant and bounded by the lines x+ y = 1 and x+ y = 3.
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Question 7 [6]

Consider the following vector field:

F =
〈

y3 + 1, 3xy2 + 1
〉

.

(7.1) Is
∫

C
F · dr path-independent? Justify your answer clearly. (2)

(7.2) Show that
∫

C
F · dr = 2, where C is the semi-circular path, in the first quadrant, with

starting point (0, 0) and terminal point (2, 0). (4)
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Question 8 [5]

The force exerted by an electric charge at the origin on a charged particle at a point (x, y, z) with
position vector r = 〈x, y, z〉 is F = Kr

||r||3 , where K is a constant.

Find the work done by this latter force as the particle moves along a straight line from (2, 0, 0) to
(2, 1, 5).
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Question 9 [4]

Given a vector field F = P i+Qj+Rk. Show that

∫

C

F · dr =
∫

C

P dx+Qdy +Rdz

along a smooth curve C.
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