## UNIVERSITY OF JOHANNESBURG

FACULTY OF SCIENCE

## DEPARTMENT OF MATHEMATICS

MODULE ASMA2B1
MULTIVARIABLE AND VECTOR CALCULUS (MAIN STREAM)

CAMPUS APK
EXAM JUNE 2014

| DATE | $14 / 06 / 2014$ |
| :--- | :--- |
| EXAMINER | MRS C DUNCAN |
| INTERNAL MODERATOR | DR J SOUTHEY |
| DURATION | 2 HOURS |
| MARKS | 45 |

SURNAME AND INITIALS $\qquad$

STUDENT NUMBER $\qquad$

CONTACT NUMBER $\qquad$

NUMBER OF PAGES: $1+10$
INSTRUCTIONS:

1. ANSWER ALL QUESTIONS ON THE PAPER IN PEN
2. CALCULATORS ARE ALLOWED
3. INDICATE CLEARLY ANY ADDITIONAL WORKING OUT

## Question 1

(1.1) Define clearly what is meant by saying " $f(x, y)$ is continuous at the point $(a, b)$ ".
(1.2) Is the function

$$
f(x, y)= \begin{cases}\frac{2 x y}{x^{2}+2 y^{2}} & \text { if }(x, y) \neq(0,0)  \tag{3}\\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

continuous at $(0,0)$ ?

Show that a differentiable function $f$ decreases most rapidly at $(x, y)$ in the direction opposite to the gradient vector, that is, in the direction $-\nabla f(x, y)$.

## Question 3

Consider the volume represented by the following triple integral:

$$
V=\left[\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{-\sqrt{4-x^{2}-y^{2}}}^{\sqrt{4-x^{2}-y^{2}}} d z d y d x\right]-\left[\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{-\sqrt{1-x^{2}-y^{2}}}^{\sqrt{1-x^{2}-y^{2}}} d z d y d x\right]
$$

(3.1) Explain, in words, the represented volume.
(3.2) Rewrite the first term only in the order $d x d z d y$.
(3.4) Rewrite $V$ in spherical coordinates using only one triple integral.
(3.4) Rewrite $V$ in cylindrical coordinates.

A circular cylindrical hole of radius 1 is drilled through the centre of a sphere with radius 2 . Sketch the resulting solid in an appropriate orientation, set up a triple integral in cylindrical coordinates representing the volume of the solid (using ONLY one triple integral) and calculate this volume.

Rewrite the following triple integral in spherical coordinates:

$$
\int_{0}^{1} \int_{\sqrt{3} x}^{\sqrt{4-x^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{4-x^{2}-y^{2}}} d z d y d x
$$

## Question 6

Use an appropriate change of variable to evaluate the double integral

$$
\iint_{R} \cos \left(\frac{x-y}{x+y}\right) d A
$$

where $R$ is in the first quadrant and bounded by the lines $x+y=1$ and $x+y=3$.

## Question 7

Consider the following vector field:

$$
\mathbf{F}=\left\langle y^{3}+1,3 x y^{2}+1\right\rangle .
$$

(7.1) Is $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ path-independent? Justify your answer clearly.
(7.2) Show that $\int_{C} \mathbf{F} \cdot d \mathbf{r}=2$, where $C$ is the semi-circular path, in the first quadrant, with starting point $(0,0)$ and terminal point $(2,0)$.

The force exerted by an electric charge at the origin on a charged particle at a point $(x, y, z)$ with position vector $\mathbf{r}=\langle x, y, z\rangle$ is $\mathbf{F}=\frac{K \mathbf{r}}{\|\mathbf{r}\|^{3}}$, where $K$ is a constant.
Find the work done by this latter force as the particle moves along a straight line from $(2,0,0)$ to $(2,1,5)$.

## Question 9

Given a vector field $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$. Show that

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C} P d x+Q d y+R d z
$$

along a smooth curve $C$.

