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BACKGROUND: High surrounding greenness has many health benefits and might contribute to slower biological aging. However, very few studies
have evaluated this from the perspective of epigenetics.
OBJECTIVES:We aimed to evaluate the association between surrounding greenness and biological aging based on DNA methylation.

METHODS: We derived Horvath’s DNA methylation age (DNAmAge), Hannum’s DNAmAge, PhenoAge, and GrimAge based on DNA methylation
measured in peripheral blood samples from 479 Australian women in 130 families. Measures of DNAmAge acceleration (DNAmAgeAC) were
derived from the residuals after regressing each DNAmAge metric on chronological age. Greenness was represented by satellite-derived Normalized
Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) metrics within 300-, 500-, 1,000-, and 2,000-m buffers surrounding par-
ticipant addresses. Greenness-DNAmAgeAC associations were estimated using a within-sibship design fitted by linear mixed effect models, adjusting
for familial clustering and important covariates.
RESULTS: Greenness metrics were associated with significantly lower DNAmAgeAC based on GrimAge acceleration, suggesting slower biological
aging with higher greenness based on both NDVI and EVI in 300–2,000 m buffer areas. For example, each interquartile range increase in NDVI
within 1,000 m was associated with a 0.59 (95% CI: 0.18, 1.01)–year decrease in GrimAge acceleration. Greenness was also inversely associated
with three of the eight components of GrimAge, specifically, DNA methylation-based surrogates of serum cystatin-C, serum growth differentiation
factor 15, and smoking pack years. Associations between greenness and biological aging measured by Horvath’s and Hannum’s DNAmAgeAC were
less consistent, and depended on neighborhood socioeconomic status. No significant associations were estimated for PhenoAge acceleration.

DISCUSSION: Higher surrounding greenness was associated with slower biological aging, as indicated by GrimAge age acceleration, in Australian
women. Associations were also evident for three individual components of GrimAge, but were inconsistent for other measures of biological aging.
Additional studies are needed to confirm our results. https://doi.org/10.1289/EHP8793

Introduction
As a result of decreased fertility and improved survival, the popula-
tion is aging rapidly across the world (United Nations 2017). The
global population aged ≥60 y has increased from 382million in
1980 to 962million in 2017 and is predicted to double again by
2050, reaching nearly 2:1 billion (United Nations 2017). With this
rapid demographic shift, it is important to better understand the
determinants of the biological aging process and how to achieve
healthy aging (WHO 2015). Several biomarkers of biological
aging have been proposed to predict the functional capability of a
person, and the DNA methylation age (DNAmAge) has been sug-
gested as themost robust (Ferrucci et al. 2020; Jylhävä et al. 2017).

DNAmAge is a measurement of biological aging based onDNA
methylation, a biological process that regulates gene expression by

adding methyl groups to the cytosine bases of the DNA (Horvath
and Raj 2018). Four main algorithms are used to calculate
DNAmAge: Horvath’s age (Horvath 2013), Hannum’s age
(Hannum et al. 2013), PhenoAge (Levine et al. 2018), and GrimAge
(Lu et al. 2019). The DNAmAge acceleration (DNAmAgeAC) can
be estimated as the residuals after regressing individual measures of
DNAmAge on chronological age (the calendar time that has passed
since birth). IncreasedDNAmAgeAChas been positively associated
with mortality and conditions related to aging, such as cancer and
cardiovascular diseases (Horvath and Raj 2018; Levine et al. 2018;
Lu et al. 2019). DNAmAgeAC calculated from the most recently
developed estimator (GrimAge) showed the strongest association
(GrimAge>PhenoAge>Hannum>Horvath) with deaths, cancers,
coronary heart disease, and early age at menopause in an analysis of
longitudinal data from 6,395 adults (mean age: 63.0 y) in four
cohorts (Framingham Heart Study, Women’s Health Initiative,
JacksonHeart Study, and InCHIANTI Study) followed for 13.7 y on
average (Lu et al. 2019).

An important feature of DNAmAge is that DNA methylation is
modifiable by interventions and environmental factors, making it a
useful tool for identifying or validating healthy aging determinants
(Horvath and Raj 2018). One of the potentially important determi-
nants is surrounding greenness, also called residential green space
or surrounding vegetation (Reid et al. 2018), referring to a measure-
ment of the density of vegetated land (e.g., gardens, parks, grass-
land) in surrounding areas (Taylor and Hochuli 2017). Greenness is
a critical component of a healthy built environment. A high level of
surrounding greenness may decrease mental stress, facilitate social
interaction, boost physical activity, and reduce harm from noise, air
pollution, and heat exposure (James et al. 2015; Markevych et al.
2017). Numerous epidemiological studies have reported evidence
supporting health benefits of high surrounding greenness, including

Address correspondence to Yuming Guo, School of Public Health and
Preventive Medicine, Monash University, Level 2, 553 St. Kilda Rd.,
Melbourne, VIC 3004 Australia. Email: yuming.guo@monash.edu
Supplemental Material is available online (https://doi.org/10.1289/EHP8793).
M.J.A. holds investigator-initiated grants from Pfizer and Boehringer-

Ingelheim for unrelated research. He has undertaken an unrelated consultancy
for and received assistance with conference attendance from Sanofi. He also
received a speaker’s fee from GlaxoSmithKline. All other authors declare
they have no actual or potential competing financial interests.
Received 9 December 2020; Revised 6 August 2021; Accepted 10 August

2021; Published 30 August 2021.
Note to readers with disabilities: EHP strives to ensure that all journal

content is accessible to all readers. However, some figures and Supplemental
Material published in EHP articles may not conform to 508 standards due to
the complexity of the information being presented. If you need assistance
accessing journal content, please contact ehponline@niehs.nih.gov. Our staff
will work with you to assess and meet your accessibility needs within 3
working days.

Environmental Health Perspectives 087007-1 129(8) August 2021

A Section 508–conformant HTML version of this article
is available at https://doi.org/10.1289/EHP8793.Research

https://doi.org/10.1289/EHP8793
mailto:yuming.guo@monash.edu
https://doi.org/10.1289/EHP8793
http://ehp.niehs.nih.gov/accessibility/
mailto:ehponline@niehs.nih.gov
https://doi.org/10.1289/EHP8793


slower cognitive decline and reduced risks ofmental illness, obesity,
cardiovascular diseases, type 2 diabetes, and death (de Keijzer et al.
2018, 2020; Fong et al. 2018; James et al. 2015; Jia et al. 2018;
Lachowycz and Jones 2011; Rojas-Rueda et al. 2019; Sarkar 2017).

To the best of our knowledge, only one study of infants,
which was reported as a conference abstract, has evaluated the
relationship between greenness and DNA methylation-based
measures of biological aging (Sbihi et al. 2018). The study esti-
mated gestational age (GA) based on DNA methylation measured
in cord blood samples and reported a borderline association
between greenness surrounding the maternal residence and DNA
methylation-based GA acceleration (i.e., older DNA methylation
GA compared with chronological GA) {0.6 d, 95% [confidence
interval (CI)]: −0:6 to 1.8, for one interquartile range (IQR) ex-
posure increase}. This suggested that high greenness may accel-
erate development in utero (Sbihi et al. 2018).

Given the evidence supporting the benefits of high surround-
ing greenness on health, we aimed to evaluate whether high sur-
rounding greenness can slow biological aging in adults. This can
be indicated by inverse associations between greenness exposures
and DNA methylation-based measures of biological aging.

Methods

Study Design and Population
We analyzed data from the Australian Mammographic Density
Twins and Sisters Study (AMDTSS), a twin and family study pop-
ulation (Stone et al. 2007). The AMDTSS was originally designed
to investigate genetic, environmental, and lifestyle factors associ-
ated with mammographic density, a major risk factor for breast
cancer (Boyd et al. 2002). In 1995–1999, female twins in three
Australian cities (Melbourne, Sydney, and Perth) were recruited
through the Australian Twin Registry. In 2004–2009, the twins
were invited to participate further, and their sisters were invited to
participate as well. The study included participants 40–70 years of
age and excluded pregnant women or nursing mothers and women
with a history of breast cancer. Written informed consent was
obtained from all participants. Participants were asked to complete
a telephone-administered questionnaire and, if they consented to
provide a blood sample, were sent a blood collection kit with a
shipping container, tubes, and detailed instructions and asked to
visit a nearby contracted pathology laboratory where a 27-mL pe-
ripheral whole-blood sample was collected. In the case a partici-
pant was unable to travel to a pathology laboratory, a trained
phlebotomist visited their home to perform the blood collection.
All blood samples were delivered to the Genetic Epidemiology
Laboratory at The University of Melbourne within 48 h after col-
lection. These samples were then processed to generate Guthrie
cards, whichwere used tomeasure DNAmethylation.

The AMDTSS recruited over 2,700 participants during 2004–
2009. All AMDTSS participants with DNA methylation measure-
ments were eligible for the present study, which comprised 479
women from 130 families, including 66 monozygotic twin pairs,
66 dizygotic twin pairs, and 215 sisters of these twins. Each family
had 3–6 participants. Each eligible participant had one DNAmeth-
ylation measurement. The AMDTSS was approved by the Human
Research Ethics Committee of The University of Melbourne. The
present analysis was approved by the Monash University Human
Research Ethics Committee.

DNAMethylation Data
DNA methylation was measured in peripheral blood samples
using the Illumina Infinium HumanMethylation450 BeadChip
array, as detailed in our previous study (Li et al. 2015). We

processed the raw methylation data with the Bioconductor minfi
package (Aryee et al. 2014). This process included normalization
of data using Illumina’s reference factor-based normalization
methods (preprocessIllumina) and correction of type I and II
probe bias using subset-quantile within array normalization
(SWAN) (Maksimovic et al. 2012). We used an empirical Bayes
batch-effects removal method, ComBat (Johnson et al. 2007), to
minimize the technical variation across batches. After excluding
65 probes corresponding to known single nucleotide polymor-
phisms, and probes with detection p>0:01 in one or more sam-
ples, 479,957 probes were left for further analyses (Li et al.
2015). The methylation level of each cytosine–phosphate–gua-
nine site (CpG) was represented by a probe’s beta value ranging
from 0 (not methylated) to 1 (fully methylated).

The processed DNA methylation data were used to calculate
DNAmAge and cell-type proportions (i.e., proportions of leukocyte
cells) in peripheral blood. Four measures of biological age based on
methylation of specific CpGs were derived using an online calcula-
tor (http://dnamage.genetics.ucla.edu/new): Horvath’s age, based
on 353 CpGs (Horvath 2013); Hannum’s age, based on 71 CpGs
(Hannum et al. 2013); Pheno age, based on 513 CpGs (Levine et al.
2018); and Grim age, based on 1,030 CpGs (Lu et al. 2019). In our
processedDNAmethylation data set, methylation dataweremissing
for 1CpGs used to calculateHorvath’s age, 2CpGs used to calculate
PhenoAge, and 21 CpGs used to calculate GrimAge, whereas meth-
ylation data were complete for all CpGs used to derive Hannum’s
age. The methylation levels for the missing CpGs were imputed by
the online calculator using the default k nearest neighbor (KNN)
method through the impute.knn function, with default parameters
embedded in the imputeRpackage (Di Lena et al. 2019; Hastie et al.
2018; Horvath 2013; Troyanskaya et al. 2001). In a simulation study
using data from 1,495 healthy control samples in the Gene
ExpressionOmnibus, values ofHorvath’sDNAmAge derived using
KNN to impute methylation data that were missing completely at
random for 10% of the CpGs used to derive the metric were consist-
ent with Horvath’s DNAmAge estimates based on the complete
data (Pearson correlation coefficient = 0:99, mean absolute
error = 1:8 y) (Di Lena et al. 2019). Proportions of CD8+ T cells,
CD4+ T cells, natural killer (NK) cells, B cells, monocytes, and
granulocytes were estimated using a widely used published algo-
rithm (Houseman et al. 2012). The proportions of exhausted CD8 T
cells, naïve CD8+ T cells, naïve CD4+ T cells, and plasma cells
(effector B cells) were estimated using the algorithm embedded in
the online DNAmAge calculator (Horvath 2013). The online calcu-
lator also provides separate estimates for the eight individual com-
ponents that contribute to GrimAge, including smoking pack years
and the concentration of seven plasma proteins [adrenomedullin,
beta-2-microglobulin, cystatin-C, growth differentiation factor 15
(GDF-15), leptin, plasminogen activator inhibitor 1 (PAI-1), and tis-
sue inhibitor metalloproteinases 1 (TIMP-1)], which were all esti-
mated by DNA methylation data based on the model trained in
FraminghamHeart Study samples (Lu et al. 2019).

Exposure Assessment
Participants who agreed to donate a blood sample provided resi-
dential address information (state, city, suburb, street name, and
house number) for shipment of the blood collection kit. We trans-
formed participant addresses into longitudes and latitudes using
the Google Map Application Programming Interface (API)
through the geocode function embedded in ggmapR package (ver-
sion 3.0.0; R Development Core Team). These longitudes and lati-
tudes were then used for exposure assessment. According to the
2011 Australian Statistical Geography Standard, 84% (i.e., 403/
479) of the residential addresses were in urban areas (ABS 2011,
2020). Because residential histories were not collected, we
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assumed that the participants lived at the same residence during the
12 months before their blood draw. This assumption is supported
by a national survey conducted in 2007–2008 that reported that
nearly 80% of Australians 40–79 years of age had not changed resi-
dences in the last 5 y (ABS 2010). At the time of blood draw, 12
(2.5%) participants (two monozygotic twin pairs, two dizygotic
twin pairs, and two non-twin sister pairs) lived at the same residen-
tial address with her twin or sister.

Residential surrounding greenness was measured using the
Normalized Difference Vegetation Index (NDVI) and the Enhanced
Vegetation Index (EVI), which were derived fromModerate resolu-
tion Imaging Spectroradiometer (MODIS) images collected from
the National Aeronautics and Space Administration’s Terra satellite
(Didan 2015). Green vegetation strongly absorbs visible red light
(wavelengths from 0.6 to 0:7 lm) for photosynthesis, whereas it
reflects most near-infrared light (wavelengths from 0.7 to 1:1 lm).
According to this characteristic, NDVI is calculated as NDVI=
ðNIR−RedÞ=ðNIR+RedÞ, where Red andNIR represent land sur-
face reflectance of red light and near-infrared light measured by
satellite sensors, respectively. The EVI is calculated similarly to
the NDVI, but it corrects for distortions in the reflected light due to
atmospheric aerosols and the land surface background beneath the
vegetation. The EVI has a higher sensitivity to the vegetation dif-
ference in high biomass regions (e.g., forests) than the NDVI. The
MODIS provides gridded NDVI and EVI values at a 250× 250 m
spatial resolution for every 16 d since 2000. The 16-d composites
were created on a per-pixel basis, using the ConstrainedMaximum
Value Composite algorithm. Briefly, the algorithm selects the best
observations from all images within 16 d, minimizing the effects of
image quality, cloud, and view angle. Both NDVI and EVI values
range from −1 to 1, with negative values representing ice, water,
and nonvegetated soil and higher positive values corresponding to
higher greenness.

Based on the 16-d gridded NDVI/EVI data set, we calculated
the residential surrounding greenness in several steps. First, we
selected all 16-d NDVI/EVI gridded observations at a 250 m reso-
lution during 2003–2009 across Australia. Second, we converted
negativeNDVI/EVI values in all pixels to zero so that negative val-
ues would not offset positive values in calculating the areal average
(Reid et al. 2018). Third, we calculated the surrounding NDVIs/
EVIs within different radial buffers (300, 500, 1,000, and 2,000 m)
centered on each participant’s home address for every 16 d, by
averaging the values of all pixels weighted by area size covered by
the buffer areas. We chose 300-, 500-, 1,000-, and 2,000-m buffers,
because the health impacts of surrounding greenness are most
likely to be evident within these buffers (Browning and Lee 2017;
Reid et al. 2018). Finally, to reduce the influence of seasonal varia-
tions across different locations, we classified exposures for each
index and radial buffer using the highest 16-d NDVI (or EVI) dur-
ing the year (365 d) before each participant’s blood draw.

Covariate Data
Through a telephone-administered questionnaire, we collected
data on birth date, educational level, marital status, smoking
behavior, and alcohol use behavior (see the section “Variables
measured by telephone administrated questionnaire” in the
Supplemental Material for details). For 95% of the participants
(457/479), the telephone interview was conducted within 1 y
before the blood draw, and the other participants’ telephone inter-
views were conducted within 1–2 y before the blood draw or up to
3 months after the blood draw (Figure S1). Chronological age was
defined as the calendar time period between birth date and the day
when the blood sample was collected. Area-level socioeconomic
status (SES) was represented by the percentile of Index of Relative
Socioeconomic Advantage andDisadvantage (IRSAD) in 2006 for

the population census collection district (CD) in which the partici-
pant lived. The IRSAD is a linear combination of multiple indica-
tors of community-level SES (e.g., household income, educational
level, occupation, housing conditions) collected from the popula-
tion census in Australia (ABS 2006). A higher IRSAD represents a
higher area-level SES. The CD was the smallest geographic area
for which the IRSAD data were available. In our study, the partici-
pants were distributed across 366 CDs, with the usual population
size ranging from 82 to 1,686.

We collected daily ambient temperature and relative humidity
from a gridded climate data set at 0:05� ×0:05� (about 5 × 5 km)
spatial resolution (Jeffrey et al. 2001). Each participant was
assigned the values of the pixel where her home address was
located. For each participant, we used the average ambient tem-
perature and relative humidity within 1 y (365 d) prior to the day
blood was taken in order to represent the participant’s exposure
to meteorological factors.

Statistical Analysis
Main model analyses. We used the same procedure to estimate
associations between each DNAmAgeAC metric and surrounding
greenness metric. First, we calculated the DNAmAgeAC as resid-
uals after regressing DNAmAge on chronological age (Horvath
and Raj 2018; Levine et al. 2018; Lu et al. 2019). Then, we esti-
mated associations between greenness and DNAmAgeAC using
a within-sibship design (Li et al. 2017; Stone et al. 2010) fitted
by a linear mixed-effect model, with random family-specific
intercepts to capture familial clustering:

EðDNAmAgeACijÞ=b0 + bwithin × ðGreenij −GreeniÞ

+bbetween ×Greeni + b×Xij + li, (1)

where DNAmAgeACij is the DNAmAge acceleration of subject j
from family i;Greenij j is the surrounding greenness index for sub-
ject j from family i (e.g., NDVIwithin 1,000 m);Greeni is the aver-
age surrounding greenness of all subjects in family i, with each
subject’s surrounding greenness defined according to their residen-
tial address and blood draw date; and li is the random intercept for
family i. We modeled greenness as a linear term because the linear
model had a lower Bayesian information criterion (BIC) value than
models of greenness as a natural cubic spline with 2–4 degrees of
freedom (df) (Table S1).

bbetween and bwithin represent effect estimates (difference in
mean DNAmAgeAC per IQR increase in greenness) for between-
and within-sibship associations, respectively. The between-sibship
association represents a cross-sectional comparison between fami-
lies that may be biased by familial factors and genetic background
that vary between families. By contrast, the within-sibship associa-
tion represents intra-family differences between twins and sisters,
thus reducing or eliminating confounding by genetic background
and shared familial factors (Li et al. 2017; Stone et al. 2010).
Therefore, we report bwithin and its 95%CI throughout this article.

Xij represents a set of covariates that might bias greenness–
DNAmAgeAC associations (James et al. 2015; Markevych et al.
2017), including educational level (secondary or below; voca-
tional training; university), marital status (married or de facto;
never married; widowed or separated or divorced), smoking
behavior (current smoker, former smoker, never smoked), alcohol
use (current drinker, former drinker, never drank), and area-level
SES (four categories according to quartiles in Australia); plus
continuous variables for chronological age, annual mean temper-
ature, annual mean relative humidity, and the proportions of
seven types of leukocyte cells (naïve CD8+ T cells, CD8+ T cells,
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plasma cells, CD4+ T cells, NK cells, monocytes, and granulo-
cytes), as suggested by (Lu et al. 2019). Given adjustment for
cell-type proportions, effect estimates from our main model
should be interpreted as associations between greenness and dif-
ferences in intrinsic DNAmAgeAC (independent of differences
in leukocyte proportions) (Horvath and Raj 2018).

Missing values for educational level (two participants) and
area-level SES (one participant), were addressed by five multiple
imputations using the default method embedded in the mice R
package (van Buuren and Groothuis-Oudshoorn 2011), with the
four DNAmAgeAC metrics, the eight greenness metrics, and the
main model covariates (other than the target variable of the impu-
tation) used as predictors.

Subgroup analyses. We performed subgroup analyses by
educational level (secondary or below vs. higher than second-
ary, including vocational training and university), area-level
SES (lowest 50% vs. highest 50%), age group (<60 vs:≥60 y),
smoking behavior (never smoked vs. current or former smoker),
DNA methylation-based smoking index (described below,
≤median vs:>median) (Gao et al. 2017), and alcohol use
(never drank vs. current or former drinker) to evaluate the
potential modification of the greenness-DNAmAgeAC associa-
tion by these factors. We tested the statistical difference in
effect estimates between subgroups by adding an interaction
term (e.g., education–greenness) to the main model.

Sensitivity analyses. We performed several sensitivity analy-
ses. First, we further adjusted for season (four categories: spring,
summer, fall, winter) and survey year (continuous variable) at the
time of the blood draw to account for potential seasonal variation
and long-term trends in DNA methylation. Second, we modeled
annual mean temperature and relative humidity as nonlinear (vs.
linear) terms using natural cubic splines with 3 df (Xu et al.
2020). Third, we repeated models without adjusting for smoking
and alcohol use because there was no clear evidence that these
two variables were related to greenness. Fourth, we repeated the
models without adjusting for cell-type proportions in order to
generate effect estimates that reflected extrinsic differences in
DNAmAgeAC associated with greenness. The extrinsic differen-
ces reflect both differences in DNAmAgeAC among different leu-
kocyte subpopulations and intrinsic differences in DNAmAgeAC
independent of leukocyte type (Horvath and Raj 2018). Finally,
instead of adjusting for self-reported smoking as a categorical
variable (i.e., never, former, or current smoker) we adjusted for a
continuous DNA methylation-based smoking index based on
nine CpGs, using the algorithm provided by Gao et al. (2017),
which the authors reported to be a stronger predictor of frailty in
a cross-sectional sample of German adults than self-reported
smoking. In our study population, the smoking index tended to
be higher in current smokers than in former or never smokers,
although smoking index distributions overlapped among the three
smoking groups based on self-report (Figure S2). We used fixed-
effects meta-regressions to test whether effect estimates from sen-
sitivity analyses differed significantly from corresponding esti-
mates based on the main model (Xu et al. 2019).

Associations with components of GrimAge. To evaluate the
association between surrounding greenness and individual compo-
nents of GrimAge, we fit separate models using Z-scores for each
component as the outcome instead of GrimAge. Z-scorewas calcu-
lated as (actual value –mean value)/ standard deviation.

All data analyses were performed using R software (version
3.5.1; R Development Core Team) with packages nlme (linear
mixed effect model), splines (nature cubic splines), mvmeta
(meta-regression), and mice (multiple imputation by chained
equations). In this analysis, a two-sided p<0:05 was considered
as statistically significant.

Results
We included 479 participants who resided in many different loca-
tions across Australia (Figure 1). All of themwere female, including
132 monozygotic twins, 132 dizygotic twins, and 215 sisters of the
twins from 130 families (Table 1). Their chronological ages ranged
from 39.7 to 77.5 y (median= 55.7 y; IQR: 11.75 y). Among the
four DNAmAgeAC estimates, the GrimAge acceleration showed
the smallest variation [standard deviation ðSDÞ= 3.12 y; minimum
to maximum: −7:10 to 13.74 y; median= −0:44 y; IQR: 3.91 y],
whereas the PhenoAge acceleration showed the largest variation
(SD= 5.78 y; minimum to maximum: −15:45 to 21.25 y;
median= 0.31 y; IQR: 8.17 y) (Table 2). The median NDVI and
EVI values within 1,000 m were 0.55 (IQR: 0.164) and 0.35 (IQR:
0.119), respectively. The distributions of NDVI and EVI were simi-
lar across the four buffer zones for each metric (Table 2), and the
greenness indicators were highly correlated (Pearson correlation
coefficients = 0:85–0.98 and 0.82–0.97 among NDVI and EVI
measures, respectively, and 0.77–0.92 between NDVI and EVI
measures) (Figure S3). Among the four DNAmAge estimates, the
GrimAge showed the strongest association with chronological age
(Pearson correlation coefficients = 0:88 for GrimAge, 0.72 for
Hannum’s age, 0.66 for Horvath’s age, 0.62 for PhenoAge)
(Figures S3–S4). The four DNAmAge and DNAmAgeAC esti-
mates were also correlated with each other (Pearson correlation
coefficients = 0:67–0.80 between DNAmAge estimates, and
0.26–0.64 between DNAmAgeAC estimates). GrimAge accelera-
tion was positively associated with the eight individual compo-
nents of GrimAge, with Pearson correlation coefficients ranging
from 0.19 for DNA methylation-based serum TIMP-1 to 0.80 for
DNAmethylation-based smoking pack years (Figure S5).

GrimAge acceleration showed consistent significant (all
p<0:05) inverse associations with NDVI and EVI metrics across
all buffers (Figure 2). Each IQR increase in NDVI value within
1,000 m was associated with a 0.59-y decrease (95% CI: −1:01,
−0:18; p=0:005) in GrimAge acceleration, whereas the effect esti-
mates were slightly weaker for other greenness metrics. However,
none of the greenness exposure metrics were significantly associ-
atedwithDNAmAgeAC based onHorvath’s age, Hannum’s age, or
PhenoAge (all p>0:10) in the study sample as awhole.

There were significant interactions between surrounding
greenness and area-level SES on Horvath’s and Hannum’s
DNAmAgeAC. In general, IQR increases in surrounding green-
ness were associated with increased Horvath’s and Hannum’s
DNAmAgeAC among participants whose area-level SES was
below the median of Australia [e.g., for an IQR increase in EVI
within 300 m, 1.21 y (95% CI: 0.14, 2.28) and 0.87 y (95% CI:
0.05, 1.70), respectively], whereas corresponding estimates sug-
gested slower age acceleration with increased greenness among
those with a higher area-level SES [i.e., −0:43 y (95% CI: −1:35,
0.50; pinteraction = 0:03) for Horvath’s DNAmAgeAC and −0:86 y
(95% CI: −1:64, −0:08; pinteraction = 0:004) for Hannum’s
DNAmAgeAC] (Figure 3; Table S2). For GrimAge acceleration,
there was a consistent pattern of inverse associations with green-
ness among those with a higher area-level SES, and null or
weaker inverse associations among those with a lower area-level
SES, although the differences were not statistically significant
(pinteraction = 0:10–0:66). Associations with PhenoAge accelera-
tion varied, without consistent patterns by greenness metric or
area-level SES (pinteraction ≥ 0:28).

Differences in associations with Horvath’s and Hannum’s
DNAmAgeAC by education were somewhat consistent with dif-
ferences by area-level SES, with increased greenness tending to
have positive or null associations with age acceleration among
those with lower education, and inverse or null associations
among those with a higher education, although the differences
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were not statistically significant (pinteraction ≥ 0:08 and ≥0:23,
respectively) (Figure S6, Table S2). For GrimAge acceleration,
associations were very similar between those with lower and
higher education (pinteraction ≥ 0:26), whereas associations with
PhenoAge acceleration varied, without clear differences by edu-
cation (pinteraction ≥ 0:17).

Differences in associations between greenness and DNAmAgeAC
by smoking varied depending on the DNAmAgeAC metric and the
variable used to classify smoking. For Horvath’s and Hannum’s
DNAmAgeAC, associations tended to be positive or null among
current and former smokers (combined) and inverse or null among
never smokers (pinteraction = 0.04–0.13 and 0.03–0.24 for Horvath’s
and Hannum’s metric, respectively) (Figure S7, Table S2).
However, associations followed an opposite pattern for the DNA
methylation-based smoking index, such that associations tended to
be positive or null among those with a higher smoking index (above
the median), and inverse or null for those with a lower smoking
index (pinteraction = 0.07–0.39 and 0.08–0.26, respectively) (Figure
S8). In contrast, associations with GrimAge DNAmAgeAC were
inverse and similar between current or former smokers and never
smokers (pinteraction ≥ 0:28) and between those with a high or low

smoking index (pinteraction ≥ 0:28) (Figures S7–S8, Table S2.)
Associations with PhenoAge DNAmAgeAC varied by greenness
metric but were similar by smoking status (pinteraction ≥ 0:19) and
high or low smoking index (pinteraction ≥ 0:50).

Associations between greenness metrics and DNAmAgeAC
varied somewhat by age (<60 or≥60 y), but the differences were
not statistically significant (all pinteraction ≥ 0:15) and there were
no consistent patterns by age among the DNAmAgeAC outcomes
(Figure S9, Table S2). In general, associations between greenness
and DNAmAgeAC were similar between those who never used
alcohol and those who were current or former users, regardless of
the DNAmAgeAC metric used (all pinteraction ≥ 0:18) (Figure S10,
Table S2).

Z-scores for five of the individual components used to derive
the overall GrimAge metric (DNA methylation-based predictors
of smoking pack years, serum cystatin-C, serum GDF-15, serum
beta-2-microglobulin, and serum PAI-1) were inversely associ-
ated with all of the greenness metrics (Figure 4; Table S3). The
associations were strongest for DNA methylation-based surro-
gates of smoking pack years (significant for all exposures), fol-
lowed by serum cystatin-C and serum GDF-15. Of the remaining

Figure 1. The geographical distribution and level of surrounding greenness of the 479 participants in Australia during 2004–2009. Note: NDVI, Normalized
Difference Vegetation Index.
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components, associations with exposures were mixed (inverse,
null, and positive) for methylation-based estimators of serum
adrenomedullin, close to the null for serum TIMP-1, and null or
positive for serum leptin.

Effect estimates were similar to the main model
(pdifferences ≥ 0:45) in sensitivity analyses of models adjusted for
season and survey year, for annual mean temperature and relative
humidity as nonlinear terms, and for a DNA methylation-based
smoking index instead of self-reported smoking, as well as for
models that were not adjusted for self-reported smoking and alco-
hol use or for cell-type proportions (Figure S11, Table S4).

Discussion
To the best of our knowledge, this is the first study to evaluate
the association between surrounding greenness and measures of
biological aging based on DNA methylation. Higher surrounding
greenness was associated with slower biological aging, as meas-
ured by GrimAge acceleration. Of the eight components used to
derive GrimAge, DNA methylation-based estimators of smoking
pack years, serum GDF-15, and serum cystatin-C showed the
strongest associations across both greenness metrics in all buffers
when analyzed as separate outcomes. The association between
higher surrounding greenness and slower biological aging meas-
ured by Horvath’s, Hannum’s, and PhenoAge DNAmAgeAC
were close to the null in the population as a whole. Some signifi-
cant positive associations were estimated for Horvath’s and
Hannum’s age acceleration metrics among those with lower area-
level SES, and some significant associations were estimated for
Hannum’s metric among those with a higher area-level SES,
whereas no significant associations were estimated for PhenoAge
acceleration.

Given the well-documented associations between higher sur-
rounding greenness and a lower risk of many aging related condi-
tions (e.g., cognitive decline, cardiovascular diseases, type 2
diabetes) (de Keijzer et al. 2018, 2020; Fong et al. 2018; James
et al. 2015; Jia et al. 2018; Lachowycz and Jones 2011; Rojas-
Rueda et al. 2019; Sarkar 2017), we hypothesized that high sur-
rounding greenness would slow the rate of biological aging. Our
findings for GrimAge support this hypothesis in our study popu-
lation. This is generally consistent with a cross-sectional study

Table 2. Descriptive statistics of continuous variables the 479 participants in Australia during 2004–2009.

Variables Mean±SD Min

Percentiles

Max IQR25th 50th 75th

Chronological age (y) 56:41± 7:90 39.69 50.16 55.66 61.91 77.53 11.75
DNAmAge (y)
Horvath’s age 55:54± 6:46 38.62 50.89 55.19 60.02 72.89 9.13
Hannum’s age 57:28± 6:37 40.89 52.91 57.11 61.50 74.88 8.59
PhenoAge 53:04± 7:37 34.92 47.96 52.75 57.73 72.79 9.78
GrimAge 54:20± 6:46 39.64 49.51 53.86 58.54 72.76 9.04
DNAmAgeAC (y)
Horvath’s age acceleration 0:00± 4:88 −16:33 −3:23 −0:15 3.02 15.40 6.26
Hannum’s age acceleration 0:00± 4:41 −14:98 −2:75 0.21 2.66 18.42 5.40
PhenoAge acceleration 0:00± 5:78 −15:45 −4:20 0.31 3.96 21.25 8.17
GrimAge acceleration 0:00± 3:12 −7:10 −2:17 −0:44 1.74 13.74 3.91
Surrounding greenness
NDVI (buffer)
300 m 0:56± 0:12 0.25 0.47 0.55 0.64 0.87 0.175
500 m 0:56± 0:12 0.26 0.47 0.55 0.64 0.87 0.165
1,000 m 0:56± 0:12 0.26 0.48 0.55 0.64 0.87 0.164
2,000 m 0:57± 0:12 0.27 0.48 0.56 0.66 0.85 0.178

EVI (buffer)
300 m 0:37± 0:10 0.15 0.30 0.36 0.42 0.76 0.122
500 m 0:36± 0:10 0.14 0.30 0.35 0.42 0.77 0.121
1,000 m 0:36± 0:10 0.14 0.30 0.35 0.42 0.74 0.119
2,000 m 0:37± 0:10 0.13 0.29 0.35 0.43 0.70 0.134

Annual mean temperature (°C) 17:68± 2:81 11.35 15.26 17.76 20.26 25.07 5.00
Annual mean relative humidity (%) 69:81± 3:76 52.97 67.92 70.13 72.13 80.80 4.21

Notes: The chronological age was calculated as the difference between the date blood was taken and birth date. 2-y average, the average of the current year and previous year prior to
blood being taken; DNAmAge, DNA methylation age; DNAmAgeAC, DNA methylation age acceleration; EVI, Enhanced Vegetation Index. IQR, interquartile range; max, maximum;
min, minimum; NDVI, Normalized Difference Vegetation Index; SD, standard deviation.

Table 1. Basic characteristics of the 479 participants in Australia during
2004–2009.
Characteristics n (%)

Women 479 (100.0)
Age group (y)
<60 323 (67.4)
≥60 156 (32.6)

Twin pairs
Dizygotic twins 132 (27.6)
Monozygotic twins 132 (27.6)
Sisters of twins 215 (44.9)
Education
Secondary or below 198 (41.3)
Vocational training 135 (28.2)
University 144 (30.1)
Missing 2 (0.4)
Marital status
Married or de facto 369 (77.0)
Never married 28 (5.8)
Widowed/separated/divorced 82 (17.1)
Area-level SES percentile in Australia
0, 25 88 (18.4)
25, 50 103 (21.5)
50, 75 136 (28.4)
75, 100 151 (31.5)
Missing 1 (0.2)
Smoking
Current 41 (8.6)
Former 147 (30.7)
Never 291 (60.8)
Alcohol use
Current 235 (49.1)
Former 52 (10.9)
Never 192 (40.1)

Note: SES, socioeconomic status.
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from Hong Kong, China, which reported that average telomere
length was longer in residents of a 69-km2 region with more
green space than in residents of four highly populated regions
(area size: 7–10 km2) with little green space after adjusting for
age, smoking, SES, and physical activity level (Woo et al. 2009).
However, although telomere length has been interpreted as a
marker of biological aging, DNAmAge is more strongly associ-
ated with mortality and morbidity (Jylhävä et al. 2017) and is
thought to provide a more accurate measure of age acceleration,
particularly in differentiated cells (Horvath and Raj 2018).

Based on meta-analyses of longitudinal data from four
cohorts (6,395 adults followed for 13.7 y on average), Lu et al.
(2019) estimated that each 1-y increase in GrimAge acceleration
was associated with a 10% [hazard ratio ðHRÞ=1:10 (95% CI:
1.09, 1.12)] increase in all-cause mortality. Using this informa-
tion and the estimated difference in GrimAge acceleration with
an IQR increase in NDVI within 500 m in our study population
(–0:51 y per 0.165-unit increase in NDVI), we estimate that a
0.1-unit increase in NDVI within 500 m would be associated
with a 3% (i.e., HR=1:10−0:51× 0:1=0:165 = 0:97) decrease in all-
cause mortality. This estimate is consistent with a recent meta-

analysis that reported a pooled HR of 0.96 (95% CI: 0.94, 0.97)
for all-cause mortality associated with every 0.1-unit increase in
NDVI within 500 m (Rojas-Rueda et al. 2019).

Although all measures of greenness exposure were associated
with significantly slower biological aging based on the GrimAge
DNAmAgeAC metric, associations with the other measures of bi-
ological age acceleration were variable (depending on the green-
ness measure or study subpopulation) or null. These apparent
inconsistencies were not unexpected given recent evidence sug-
gesting that GrimAge is a better indicator of biological aging. For
example, among the four DNAmAge estimators, DNAmAgeAC
estimated by GrimAge showed the strongest association
(GrimAge>PhenoAge>Hannum>Horvath) with aging-related
conditions (death, cancer, coronary heart disease, and age at meno-
pause) based on an analysis of longitudinal data from four cohorts
(6,395 participants followed for 13.7 y on average) (Lu et al.
2019). Similarly, a longitudinal analysis of data from two cohorts
of older individuals (n=2,462, mean follow-up of ∼ 9 y) reported
that, of the four DNAmAgeAC metrics assessed, GrimAge accel-
eration had the strongest and most consistent associations with
mortality, myocardial infarction, and stroke (Wang et al. 2021).

Change in DNAmAgeAC (95% CI P -value
Horvath's age acceleration

NDVI within 300m 0.03 (-0.75, 0.82) 0.937
NDVI within 500m 0.11 (-0.66, 0.87) 0.783
NDVI within 1000m 0.10 (-0.68, 0.88) 0.809
NDVI within 2000m 0.18 (-0.69, 1.05) 0.687
EVI within 300m 0.25 (-0.45, 0.94) 0.493
EVI within 500m 0.29 (-0.42, 0.99) 0.429
EVI within 1000m 0.27 (-0.45, 0.98) 0.467
EVI within 2000m 0.27 (-0.55, 1.08) 0.522

Hannum's age acceleration
NDVI within 300m -0.47 (-1.11, 0.17) 0.152
NDVI within 500m -0.40 (-1.02, 0.23) 0.212
NDVI within 1000m -0.50 (-1.14, 0.14) 0.127
NDVI within 2000m -0.31 (-1.03, 0.40) 0.392
EVI within 300m -0.05 (-0.63, 0.52) 0.852
EVI within 500m -0.02 (-0.60, 0.56) 0.954
EVI within 1000m -0.09 (-0.68, 0.49) 0.760
EVI within 2000m 0.06 (-0.61, 0.74) 0.851

PhenoAge acceleration
NDVI within 300m -0.25 (-1.10, 0.61) 0.575
NDVI within 500m -0.15 (-0.99, 0.68) 0.724
NDVI within 1000m -0.30 (-1.16, 0.55) 0.489
NDVI within 2000m -0.26 (-1.22, 0.69) 0.592
EVI within 300m 0.21 (-0.55, 0.97) 0.589
EVI within 500m 0.40 (-0.37, 1.17) 0.312
EVI within 1000m 0.29 (-0.49, 1.07) 0.472
EVI within 2000m 0.25 (-0.64, 1.14) 0.585

GrimAge acceleration
NDVI within 300m -0.51 (-0.93, -0.10) 0.016
NDVI within 500m -0.51 (-0.91, -0.10) 0.014
NDVI within 1000m -0.59 (-1.01, -0.18) 0.005
NDVI within 2000m -0.50 (-0.96, -0.04) 0.035
EVI within 300m -0.50 (-0.87, -0.13) 0.009
EVI within 500m -0.45 (-0.83, -0.08) 0.018
EVI within 1000m -0.55 (-0.93, -0.17) 0.005
EVI within 2000m -0.46 (-0.89, -0.03) 0.038

-2.00 -1.00 0.00 1.00

Figure 2. The association between every interquartile range increase in surrounding greenness and change in DNAmAge acceleration among 479 women in
Australia during 2004–2009. Points and error bars represent point estimates and 95% CI, respectively. The effect estimates were from within-sibship analyses fitted
by a linear mixed effect model adjusting for individual’s chronological age, educational level, marital status and area-level socioeconomic status, smoking behav-
ior, alcohol use, annual mean temperature, annual mean relative humidity, and proportions of seven type of blood cells (naïve CD8+ T cells, CD8+ T cells, plasma
cells, CD4+ T cells, NK cells, monocytes, and granulocytes). Missing values of covariates were addressed by multiple imputations. Note: CI, confidence interval;
DNAmAgeAC, DNA methylation age acceleration; EVI, Enhanced Vegetation Index; NDVI, Normalized Difference Vegetation Index; NK, natural killer.
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GrimAge acceleration also showed the strongest association with
fatty liver and excess visceral fat in 1,177 adults from the
FraminghamHeart Study (Lu et al. 2019). A recent analysis of data
from three cross-sectional surveys of UK adults 45–87 years of age
(n=1,388–1,685, depending on the outcome) also reported that
GrimAge acceleration was the strongest predictor of physical and
cognitive functioning, as assessed by grip strength, forced expira-
tory volume in 1 s (FEV1), mental speed, and episodic memory
(Maddock et al. 2020). For example, a 1-y increase in GrimAge
acceleration was associated with a 0:03-mL (95% CI: –0:05,
–0:01) lower mean FEV1, whereas corresponding estimates for
Horvath’s, Hannum’s, and PhenoAge DNAmAgeACmetrics were
0.00 (95% CI: –0:01, 0.01), 0.00 (95% CI: –0:02, 0.01), and –0:01
(95% CI: –0:02, –0:01), respectively (Maddock et al. 2020).
GrimAge acceleration has also shown stronger associations with
potential determinants of aging than other metrics, including
smoking and alcohol use in a cross-sectional analysis of 1,100
adults in the United States (Zhao et al. 2019) and physical activity
and neighborhood SES in cross-sectional analyses of 2,700
women in the United States (Kresovich et al. 2020; Lawrence
et al. 2020). Taken together, these findings suggest that GrimAge
DNAmAgeAC may be a better measure of biological aging than
the other DNAmAgeACmetrics examined in our analysis.

Of the eight individual DNA methylation-based components
of GrimAge, three had the strongest and most consistent associa-
tions with greenness when modeled as individual outcomes: a)
DNA methylation-based markers of smoking pack years; b)

GDF-15; and c) cystatin-C. DNA methylation-based smoking
pack years represents a DNA methylation signature resulting
from prolonged exposure to cigarette smoke (Lu et al. 2019), and
this biomarker can be reversed following smoking cessation
(McCartney et al. 2018). A plausible explanation for our results
is that high greenness may help reverse the DNA methylation
alterations resulting from exposure to cigarette smoke, given that
high greenness is related to reduced risk of many adverse out-
comes (e.g., cardiovascular diseases, cognitive decline, mental
illness) that can be caused by smoking (Banks et al. 2019; Deal
et al. 2020; Fong et al. 2018; Wootton et al. 2020).

GDF-15 is a promising biomarker for disease prognosis and
an emerging target for cancer immunotherapy because of its im-
portant immune-regulatory function (Wischhusen et al. 2020).
Serum levels of GDF-15 often increase with age, and highly ele-
vated serum levels of GDF-15 are mostly linked to inflammation,
myocardial ischemia, and cancer (Wischhusen et al. 2020). GDF-
15 is also a potential target in the regulation of body weight and
energy expenditure because high levels of GDF-15 contributes to
appetite loss (Tsai et al. 2016). The DNA methylation-based
GDF-15 was built to predict serum levels of GDF-15 (Lu et al.
2019). In our study, its inverse association with greenness may
reflect the documented associations between high greenness and
improved immune function (Kuo 2015) or improved metabolic
health (e.g., lower adiposity) (Sarkar 2017).

High serum levels of cystatin-C is a widely used clinical indi-
cator of reduced kidney function or declined glomerular filtration
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Figure 3. The association between every interquartile range increase in surrounding greenness and change in DNAmAge acceleration among 479 women in
Australia during 2004–2009, subgroup analyses by area-level socioeconomic status (191 women at lowest 50% vs. 288 women at highest 50%). The effect esti-
mates were from within-sibship analyses fitted by a linear mixed effect model adjusting for individual’s chronological age, educational level, marital status,
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rate (Di Somma and Marino 2019). In our study, the DNA
methylation-based cystatin-C, a predictor of serum level of
cystatin-C (Lu et al. 2019), was inversely associated with green-
ness, although the association was only statistically significant
for EVI within 300 m. This may suggest that high greenness may
be associated with improved kidney function. However, current
evidence about the relationship between greenness and kidney
diseases remains scarce (Kondo et al. 2018). A prospective
cohort study in 108,630 women from the U.S.-based Nurses’
Health Study followed up between 2000 and 2008 found a rela-
tionship between high greenness and reduce mortality risk from
kidney diseases, but the association was not statistically signifi-
cant [HR=0:63 (95% CI: 0.38, 1.04) for each 0.1-unit increase
in NDVI within 250 m], possibly due to the small number of
cases (139 cases) (James et al. 2016). The other potential expla-
nation for our results for cystatin-C might be that high greenness
is associated with lower adiposity (Sarkar 2017). Adipose tissue
was found to be among the tissues expressing the highest level of
cystatin-C mRNA, which contribute to the higher serum levels
cystatin-C seen in obese people compared with nonobese people
(Naour et al. 2009).

Patterns of associations between greenness and age accelera-
tion according to neighborhood SES varied among the
DNAmAgeAC metrics, with some significant differences for
Horvath’s and Hannum’s metrics resulting from positive

associations among those with lower neighborhood SES and
inverse associations among those with a higher neighborhood SES.
There were no significant differences by neighborhood SES for the
GrimAge metric, although associations were consistently inverse
for those with higher neighborhood SES and closer to the null for
those with lower SES. Associations between greenness and
Hannum’s and GrimAge DNAmAgeAC were similar between
those with higher and lower education, a proxy measure of
individual-level SES, whereas associations with Horvath’s
DNAmAgeAC tended to be positive for thosewith lower education
and null for those with higher education (with a significant differ-
ence for only one exposure metric.) In a Swiss cohort, the associa-
tion between surrounding greenness and lower mortality was
stronger among participants living in communities with a higher
area-level SES (Vienneau et al. 2017), whereas in residents of
Rome, Italy, residential greenness was associated lower mortality
in the population as a whole but with higher mortality among resi-
dents in the lowest quintile of area-level SES (Orioli et al. 2019).
Another study reported that a positive association between neigh-
borhood socioeconomic disadvantage and a DNA methylation-
based mortality risk index was attenuated in areas with high neigh-
borhood greenness (Ward-Caviness et al. 2020). Differences in
associations between greenness and biological age acceleration or
other health outcomes could be related to differences in greenspace
quality or accessibility between communities with higher SES or
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lower SES (Vienneau et al. 2017). Higher neighborhood SES
might also be associated with a stronger social cohesion (Feldman
and Steptoe 2004) that could boost the health benefits of green
space (Jennings and Bamkole 2019).

The twin and family design is a strength of our study. This
design compares each participant with her siblings, thus reducing
potential confounding by genetic background and shared familial
factors (e.g., childhood living environment, familial dietary
behavior) (Li et al. 2017; Stone et al. 2010). This could be an im-
portant advantage given that familial factors explain a substantial
proportion of variation in DNAmAge (Horvath and Raj 2018; Li
et al. 2020; Lu et al. 2019).

Several limitations also should be acknowledged. This is a
cross-sectional analysis, and further longitudinal studies are war-
ranted to verify our findings. Our sample size may have limited
statistical power to estimate precise and stable greenness–
DNAmAgeAC associations and potential effect modifiers. In
addition, the study included only women. Previous studies
reported that associations between surrounding greenness and
decreased mortality and body fat were weaker in men than
women (Ji et al. 2019; Sarkar 2017). Associations between green-
ness and DNAmAgeAC also might be weaker in men.

In conclusion, higher surrounding greenness was associated
with slower biological aging measured by GrimAge acceleration
in Australian women. The association was also evident for three
individual components of GrimAge and seemed to be stronger
among those with higher vs. lower neighborhood SES, although
the differences were not statistically significant. Associations
between greenness and biological aging measured by Horvath’s
and Hannum’s DNAmAgeAC were less consistent, and varied
depending on neighborhood SES. Our study and previous epide-
miological evidence suggests that GrimAge may be a more reli-
able measure of biological aging than other DNAmAge metrics,
but additional studies are needed to confirm our findings in other
populations.
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