231 research outputs found

    Influence of the lattice topography on a three-dimensional, controllable Brownian motor

    Full text link
    We study the influence of the lattice topography and the coupling between motion in different directions, for a three-dimensional Brownian motor based on cold atoms in a double optical lattice. Due to controllable relative spatial phases between the lattices, our Brownian motor can induce drifts in arbitrary directions. Since the lattices couple the different directions, the relation between the phase shifts and the directionality of the induced drift is non trivial. Here is therefore this relation investigated experimentally by systematically varying the relative spatial phase in two dimensions, while monitoring the vertically induced drift and the temperature. A relative spatial phase range of 2pi x 2pi is covered. We show that a drift, controllable both in speed and direction, can be achieved, by varying the phase both parallel and perpendicular to the direction of the measured induced drift. The experimental results are qualitatively reproduced by numerical simulations of a simplified, classical model of the system

    A nonadiabatic semi-classical method for dynamics of atoms in optical lattices

    Full text link
    We develop a semi-classical method to simulate the motion of atoms in a dissipative optical lattice. Our method treats the internal states of the atom quantum mechanically, including all nonadiabatic couplings, while position and momentum are treated as classical variables. We test our method in the one-dimensional case. Excellent agreement with fully quantum mechanical simulations is found. Our results are much more accurate than those of earlier semi-classical methods based on the adiabatic approximation.Comment: 7 pages, 5 figures, submitted to European Physical Journal

    Gene flow at the leading range edge: the long-term consequences of isolation in European Beech (Fagus sylvatica L. Kuhn)

    Get PDF
    Aim Isolation is expected to lead to negative impacts on populations due to a reduction in effective population size and gene flow, exacerbating the effects of genetic drift, which might be stronger in peripheral and fragmented populations. Fagus sylvatica (European beech) in southern Sweden presents a gradient of isolation towards the leading range edge of the species. We sought to determine the impact of long‐term isolation on genetic diversity and population genetic structure within populations of this species. Location Samples were obtained from 14 sites towards the northern edge of the native range of beech in Sweden. Taxon Fagaceae. Methods Using historical sources, we obtained area‐ and distance‐based measures of isolation. We measured genetic diversity and structure by using nuclear microsatellite marker data, and performed parentage analysis to estimate external pollen‐mediated gene flow. We implemented a partial least squares regression to determine the effects of isolation on each of the genetic diversity estimators and the measures of external pollen‐mediated gene flow. Results Long‐term isolation generally had a negative impact on genetic diversity, which is exacerbated over time, further affecting progeny and suggesting that isolated populations are subject to strong genetic drift, possibly due to the combination of founder events and persistent small population sizes. Bayesian cluster analysis revealed that isolation was also acting as a barrier to gene flow in the north‐eastern distribution of beech. Main conclusions Isolation at the leading range edge of beech in Sweden has created gradients of contemporary gene flow within the species. The long‐term cumulative effects of isolation on this wind‐pollinated tree species and its negative impacts on genetic diversity and gene flow, could lead to inbreeding depression and higher extinction risk where populations remain small and isolated

    Demonstration of a controllable three-dimensional Brownian motor in symmetric potentials

    Full text link
    We demonstrate a Brownian motor, based on cold atoms in optical lattices, where isotropic random fluctuations are rectified in order to induce controlled atomic motion in arbitrary directions. In contrast to earlier demonstrations of ratchet effects, our Brownian motor operates in potentials that are spatially and temporally symmetric, but where spatiotemporal symmetry is broken by a phase shift between the potentials and asymmetric transfer rates between them. The Brownian motor is demonstrated in three dimensions and the noise-induced drift is controllable in our system.Comment: 5 pages, 4 figure

    Validated Thermal Air Management Simulations of Data Centers Using Remote Graphics Processing Units

    Get PDF
    Simulation tools for thermal management of data centers help to improve layout of new builds or analyse thermal problems in existing data centers. The development of LBM on remote GPUs as an approach for such simulations is discussed making use of VirtualGL and prioritised multi-threaded implementations of an existing LBM code. The simulation is configured to model an existing and highly monitored test data center. Steady-state root mean square averages of measured and simulated temperatures are compared showing good agreement. The full capability of this simulation approach is demonstrated when comparing rack temperatures against a time varying workload, which employs time-dependent boundary conditions

    Infection of brain pericytes underlying neuropathology of covid‐19 patients

    Get PDF
    A wide range of neurological manifestations have been associated with the development of COVID‐19 following SARS‐CoV‐2 infection. However, the etiology of the neurological sympto-matology is still largely unexplored. Here, we used state‐of‐the‐art multiplexed immunostaining of human brains (n = 6 COVID‐19, median age = 69.5 years; n = 7 control, median age = 68 years) and demonstrated that expression of the SARS‐CoV‐2 receptor ACE2 is restricted to a subset of neuro-vascular pericytes. Strikingly, neurological symptoms were exclusive to, and ubiquitous in, patients that exhibited moderate to high ACE2 expression in perivascular cells. Viral dsRNA was identified in the vascular wall and paralleled by perivascular inflammation, as signified by T cell and macro-phage infiltration. Furthermore, fibrinogen leakage indicated compromised integrity of the blood– brain barrier. Notably, cerebrospinal fluid from additional 16 individuals (n = 8 COVID‐19, median age = 67 years; n = 8 control, median age = 69.5 years) exhibited significantly lower levels of the pericyte marker PDGFRβ in SARS‐CoV‐2‐infected cases, indicative of disrupted pericyte homeostasis. We conclude that pericyte infection by SARS‐CoV‐2 underlies virus entry into the privileged central nervous system space, as well as neurological symptomatology due to perivascular inflammation and a locally compromised blood–brain barrier

    Plasmid-mediated Quinolone Resistance among Non-TyphiSalmonella enterica Isolates, USA

    Get PDF
    We determined the prevalence of plasmid-mediated quinolone resistance mechanisms among non-Typhi Salmonella spp. isolated from humans, food animals, and retail meat in the United States in 2007. Six isolates collected from humans harbored aac(6′)Ib-cr or a qnr gene. Most prevalent was qnrS1. No animal or retail meat isolates harbored a plasmid-mediated mechanism

    Adjuvant imatinib treatment improves recurrence-free survival in patients with high-risk gastrointestinal stromal tumours (GIST)

    Get PDF
    Palliative imatinib treatment has dramatically improved survival in patients with malignant gastrointestinal stromal tumours, particularly in patients with tumours harbouring activating KIT mutations. To evaluate the effectiveness of adjuvant imatinib after radical surgery, a consecutive series of patients with high-risk tumours (n=23) was compared with historic controls (n=48) who were treated with surgery alone. The mean follow-up period was over 3 years in both groups. Only 1 out of 23 patients (4%) in the adjuvant treatment group developed recurrent disease compared to 32 out of 48 patients (67%) in the control group. This preliminary study indicates that 1 year of adjuvant treatment with imatinib dramatically improves recurrence-free survival. Confirmation of these findings awaits the results of ongoing randomised studies
    corecore