698 research outputs found

    Looking into Not-Completed Activities by Applying the 5 WHYs Method

    Get PDF

    Improved power for TB phase IIa trials using a model-based pharmacokinetic-pharmacodynamic approach compared with commonly used analysis methods

    Get PDF
    The research leading to these results has received funding from the Swedish Research Council (grant number 521-2011-3442) in addition to the Innovative Medicines Initiative Joint Undertaking (www.imi.europe.eu) under grant agreement no. 115337, resources of which are composed of financial contribution from the European Union’s Seventh Framework Programme (FP7/2007–2013) and European Federation of Pharmaceutical Industries and Associations (EFPIA) companies’ in kind contribution.Background : The demand for new anti-TB drugs is high, but development programmes are long and costly. Consequently there is a need for new strategies capable of accelerating this process. Objectives : To explore the power to find statistically significant drug effects using a model-based pharmacokinetic–pharmacodynamic approach in comparison with the methods commonly used for analysing TB Phase IIa trials. Methods : Phase IIa studies of four hypothetical anti-TB drugs (labelled A, B, C and D), each with a different mechanism of action, were simulated using the multistate TB pharmacometric (MTP) model. cfu data were simulated over 14 days for patients taking once-daily monotherapy at four different doses per drug and a reference (10 mg/kg rifampicin). The simulated data were analysed using t-test, ANOVA, mono- and bi-exponential models and a pharmacokinetic–pharmacodynamic model approach (MTP model) to establish their respective power to find a drug effect at the 5% significance level. Results : For the pharmacokinetic–pharmacodynamic model approach, t-test, ANOVA, mono-exponential model and bi-exponential model, the sample sizes needed to achieve 90% power were: 10, 30, 75, 20 and 30 (drug A); 30, 75, 245, 75 and 105 (drug B); 70, >1250, 315, >1250 and >1250 (drug C); and 30, 110, 710, 170 and 185 (drug D), respectively. Conclusions : A model-based design and analysis using a pharmacokinetic–pharmacodynamic approach can reduce the number of patients required to determine a drug effect at least 2-fold compared with current methodologies. This could significantly accelerate early-phase TB drug development.Publisher PDFPeer reviewe

    Inter-nanocarrier and nanocarrier-to-cell transfer assays demonstrate the risk of an immediate unloading of dye from labeled lipid nanocapsules

    Get PDF
    Release studies constitute a fundamental part of the nanovector characterization. However, it can be difficult to correctly assess the release of lipophilic compounds from lipid nanocarriers using conventional assays. Previously, we proposed a method including an extraction with oil to measure the loading stability of lipophilic dyes in lipid nanocapsules (LNCs). The method indicated a rapid release of Nile Red from LNCs, while the loading of lipophilic carbocyanine dyes remained stable. This method, although interesting for a rapid screening of the fluorescence labeling stability of nanocarriers, is far from what happens in vivo, where lipid acceptor phases are nanostructured. Here, lipophilic dye loading stability has been assessed, by monitoring dye transfer from LNCs toward stable colloidal lipid nanocompartments, i.e. non-loaded LNCs, using new methodology based on size exclusion chromatography (SEC) and Förster Resonance Energy Transfer (FRET). Dye transfer between LNCs and THP-1 cells (as model for circulating cells) has also been studied by FACS. The assays reveal an almost instantaneous transfer of Nile Red between LNCs, from LNCs to THP-1 cells, between THP-1 cells, and a reversal transfer from THP-1 cells to LNCs. On the contrary, there was no detectable transfer of the lipophilic carbocyanine dyes. Dye release was also analyzed using dialyses, which only revealed a very slow release of Nile Red from LNCs, demonstrating the weakness of membrane based assays for investigations of the lipophilic compound loading stability in lipid nanocarriers. These results highlight the importance of using relevant release assays, and the potential risk of an immediate unloading of lipophilic fluorescent dyes from lipid nanocarriers, in the presence of a lipid acceptor nanocompartment. Some misinterpretations of cellular trafficking and in vivo biodistribution of fluorescent nanoparticles should be avoided

    Model-based relationship between the molecular bacterial load assay and time-to-positivity in liquid culture

    Get PDF
    The molecular bacterial load (MBL) assay is a new tuberculosis biomarker which provides results in ∼4 hours. The relationship between MBL and time-to-positivity (TTP) has not been thoroughly studied and predictive models do not exist. We aimed to develop a model for MBL and identify the MBL-TTP relationship in patients. The model was developed on data from 105 tuberculosis patients from Malawi, Mozambique and Tanzania with joint MBL and TTP observations quantified from patient sputum collected for 12 weeks. MBL was quantified using polymerase chain reaction (PCR) of mycobacterial RNA and TTP using the Mycobacterial Growth Indicator Tube (MGIT) 960 system. Treatment consisted of isoniazid, pyrazinamide and ethambutol in standard doses together with rifampicin 10 or 35 mg/kg. The developed MBL-TTP model included several linked sub-models; a component describing decline of bacterial load in sputum, another component describing growth in liquid culture and a hazard model translating bacterial growth into a TTP signal. Additional components for contaminated and negative TTP samples were included. Visual predictive checks performed using the developed model gave good description of the observed data. The model predicted greater total sample loss for TTP than MBL due to contamination and negative samples. The model detected an increase in bacterial killing for 35 versus 10 mg/kg rifampicin (p=0.002). In conclusion, a combined model for MBL and TTP was developed that described the MBL-TTP relationship. The full MBL-TTP model or each sub-model used separately. Secondly, the model can be used to predict biomarker response for MBL given TTP data or vice versa in historical or future trials.PostprintPeer reviewe

    Phosphorylated Nucleolin Interacts with Translationally Controlled Tumor Protein during Mitosis and with Oct4 during Interphase in ES Cells

    Get PDF
    BACKGROUND: Reprogramming of somatic cells for derivation of either embryonic stem (ES) cells, by somatic cell nuclear transfer (SCNT), or ES-like cells, by induced pluripotent stem (iPS) cell procedure, provides potential routes toward non-immunogenic cell replacement therapies. Nucleolar proteins serve as markers for activation of embryonic genes, whose expression is crucial for successful reprogramming. Although Nucleolin (Ncl) is one of the most abundant nucleolar proteins, its interaction partners in ES cells have remained unidentified. METHODOLOGY: Here we explored novel Ncl-interacting proteins using in situ proximity ligation assay (PLA), colocalization and immunoprecipitation (IP) in ES cells. PRINCIPAL FINDINGS: We found that phosphorylated Ncl (Ncl-P) interacted with translationally controlled tumor protein (Tpt1) in murine ES cells. The Ncl-P/Tpt1 complex peaked during mitosis and was reduced upon retinoic acid induced differentiation, signifying a role in cell proliferation. In addition, we showed that Ncl-P interacted with the transcription factor Oct4 during interphase in human as well as murine ES cells, indicating of a role in transcription. The Ncl-P/Oct4 complex peaked during early stages of spontaneous human ES cell differentiation and may thus be involved in the initial differentiation event(s) of mammalian development. CONCLUSIONS: Here we described two novel protein-protein interactions in ES cells, which give us further insight into the complex network of interacting proteins in pluripotent cells

    Assembling of G-strands into novel tetra-molecular parallel G4-DNA nanostructures using avidin–biotin recognition

    Get PDF
    We describe a method for the preparation of novel long (hundreds of nanometers), uniform, inter-molecular G4-DNA molecules composed of four parallel G-strands. The only long continuous G4-DNA reported so far are intra-molecular structures made of a single G-strand. To enable a tetra-molecular assembly of the G-strands we developed a novel approach based on avidin–biotin biological recognition. The steps of the G4-DNA production include: (i) Enzymatic synthesis of long poly(dG)-poly(dC) molecules with biotinylated poly(dG)-strand; (ii) Formation of a complex between avidin-tetramer and four biotinylated poly(dG)-poly(dC) molecules; (iii) Separation of the poly(dC) strands from the poly(dG)-strands, which are connected to the avidin; (iv) Assembly of the four G-strands attached to the avidin into tetra-molecular G4-DNA. The average contour length of the formed structures, as measured by AFM, is equal to that of the initial poly(dG)-poly(dC) molecules, suggesting a tetra-molecular mechanism of the G-strands assembly. The height of tetra-molecular G4-nanostructures is larger than that of mono-molecular G4-DNA molecules having similar contour length. The CD spectra of the tetra- and mono-molecular G4-DNA are markedly different, suggesting different structural organization of these two types of molecules. The tetra-molecular G4-DNA nanostructures showed clear electrical polarizability. This suggests that they may be useful for molecular electronics
    corecore