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Abstract  16 

The molecular bacterial load (MBL) assay is a new tuberculosis biomarker which provides 17 

results in ~4 hours. The  relationship between MBL and time-to-positivity (TTP) has not been 18 

thoroughly studied and predictive models do not exist. We aimed to develop a model for 19 

MBL and identify the MBL-TTP relationship in patients. The model was developed on data 20 

from 105 tuberculosis patients from Malawi, Mozambique and Tanzania with joint MBL and 21 

TTP observations quantified from patient sputum collected for 12 weeks. MBL was quantified 22 

using polymerase chain reaction (PCR) of mycobacterial RNA and TTP using the 23 

Mycobacterial Growth Indicator Tube (MGIT) 960 system. Treatment consisted of isoniazid, 24 

pyrazinamide and ethambutol in standard doses together with rifampicin 10 or 35 mg/kg. The 25 

developed MBL-TTP model included several linked sub-models; a component describing 26 

decline of bacterial load in sputum, another component describing growth in liquid culture 27 

and a hazard model translating bacterial growth into a TTP signal. Additional components for 28 

contaminated and negative TTP samples were included. Visual predictive checks performed 29 

using the developed model gave good description of the observed data. The model predicted 30 

greater total sample loss for TTP than MBL due to contamination and negative samples. The 31 

model detected an increase in bacterial killing for 35 versus 10 mg/kg rifampicin (p=0.002). 32 

In conclusion, a combined model for MBL and TTP was developed that described the MBL-33 

TTP relationship. The full MBL-TTP model or each sub-model used separately. Secondly, the 34 

model can be used to predict biomarker response for MBL given TTP data or vice versa in 35 

historical or future trials.   36 
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Introduction 37 

The tuberculosis (TB) burden in patients is usually quantified by culture on solid medium or 38 

in liquid culture such as the Mycobacterial Growth Indicator Tube (MGIT) (1). In the 39 

diagnostic phase, the TB burden quantification gives information on disease severity and 40 

when collected during treatment, it gives information on treatment response. Quantification 41 

has usually been done using colony forming units (CFU) on solid media (2) or time-to-42 

positivity (TTP) in liquid culture using MGIT system (1). 43 

MGIT TTP has advantages over CFU counts on solid media by being less labour-intensive 44 

and more sensitive (3) but like CFU, TTP is hampered by a high degree of sample loss due to 45 

contamination and the long time taken before results are available (5-42 days) (4). This delay 46 

has a particular impact when quantitative methods are used in patient care where individual 47 

treatment adjustment decisions based on bacterial response should ideally be quick. Time-to-48 

positivity is a time-to-event variable representing an indirect measurement of the bacterial 49 

load (high CFU gives short TTP).  50 

The molecular bacterial load (MBL) assay is a new TB biomarker which is fast (~4 hours) (4) 51 

and has limited risk of contamination (5). This is because MBL is a non-culture-based real-52 

time polymerase chain reaction (PCR) method relying on Reverse-Transcription quantitative 53 

PCR (RT-qPCR) of16S rRNA to quantify bacterial load (6). Viable TB cells contain 16S 54 

rRNA which makes MBL a continuous measurement of bacterial load. MBL can be used to 55 

predict bacterial load. 56 

MBL has weak to moderate correlation with TTP in clinical trials with reported correlations 57 

of -0.5 (4) and -0.8 (7) using Spearman rank correlation. The weak correlation is not 58 

surprising since these biomarkers are different: MBL being a direct, continuous variable and 59 

TTP being an indirect, time-to-event variable. Non-linear mixed effects models have been 60 
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applied separately to MBL- (5) and TTP- (8–10) datasets separately but a combined MBL-61 

TTP model has not been presented previously. The current TTP only models do not consider 62 

contaminated samples which are a common occurrence in culture-based detection of TB. 63 

Identifying the link between MBL and TTP could contribute to the understanding of the 64 

difference in how these biomarkers quantify bacterial burden. A combined MBL-TTP model 65 

could also be used to predict one biomarker response given information about the other 66 

biomarker providing additional insights from historical trials. Given that, in some studies 67 

contamination is common especially later in treatment, including a component for 68 

contaminated TTP samples is warranted. 69 

The objectives of this study were to develop a model for MBL and identify the relationship 70 

between MBL and TTP in pulmonary TB patients by constructing a joint MBL-TTP model.   71 
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Methods 72 

Patient data 73 

The model was developed on joint MBL and TTP observations collected repeatedly over the 74 

first 12 weeks of treatment in TB patients from an underlying study whose design and original 75 

findings are reported in detail in the relevant reference (11). Briefly, the dataset comprised of 76 

data from three clinical sites in Malawi, Mozambique and Tanzania with a total sample size of 77 

105 patients (20, 53 and 32 patients from Malawi, Mozambique and Tanzania, respectively). 78 

For the current analysis, only patients with drug-susceptible TB were included. The Tanzania 79 

data were a subset of the MAMS-TB trial that has been described in detail elsewhere (12). All 80 

patients received rifampicin and isoniazid throughout the whole study. Rifampicin was given 81 

as 10 mg/kg in 93 patients and 35 mg/kg in 12 of the patients from MAMS-TB (12). Isoniazid 82 

was given in standard dosage (5 mg/kg). Ethambutol and pyrazinamide were given in 83 

standard dosage (15-20 and 20-30 mg/kg, respectively) for the first eight weeks. Sputum was 84 

collected at baseline and at weeks 2, 4, 8 and 12 at all three sites. Sputum sampling was done 85 

either by spot sampling where sputum was collected during the on-going visit or by early 86 

morning samples where sputum was collected over-night. Pooled spot and early morning 87 

sputum was used to determine MBL and TTP for Malawi and Mozambique. For Tanzania, 88 

MBL was quantified on spot and TTP on early morning sputum. The procedure for MBL 89 

quantification was identical between sites as described previously (7). Time-to-positivity was 90 

determined using MGIT 960 (Becton-Dickinson, Sparks, MD). The TTP was tested for 91 

contamination for the Mozambique and Tanzania sites but not for Malawi. For the current 92 

analysis, samples with MBL below 100 CFU/mL were considered negative (i.e. the lower 93 

limit of quantification [LLOQ]=100 CFU/mL) (5) and TTP above 42 days were considered 94 

negative. 95 
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 96 

Modelling strategy overview 97 

The main goal with the model development was to develop a final model that described the 98 

relationship between MBL and TTP data. However, the model development was divided into 99 

first developing a MBL only model, after which TTP data was included in the modelling to 100 

develop a final, joint MBL-TTP model.  101 

For the continuous MBL biomarker directly reflecting bacterial load, we considered analysing 102 

this biomarker using models able to describe declining bacterial density in sputum, such as a 103 

bi-exponential function as applied previously to MBL data (5). The model for bacterial load 104 

was termed the sputum sub-model. 105 

The TTP data was analysed in a different fashion (8) considering it is an indirect measurement 106 

of bacterial load reflecting time-to-event data. For TTP, the experimental procedure is first to 107 

inoculate bacteria in sputum in a liquid culture where growth takes place. This was described 108 

in our approach by linking the sputum model which describes changes in bacterial load in 109 

sputum to a mycobacterial growth sub-model. The growth in liquid culture leads to carbon 110 

dioxide production and as the carbon dioxide reaches a certain level, a positive signalling 111 

event is recorded. Thus, a high degree of growth is expected to yield a high probability of 112 

achieving a short TTP and this was handled in our approach by linking the growth to the 113 

probability of a positive signalling event to occur using survival modelling by incorporating a 114 

hazard sub-model. Finally, a novel feature of this work is the addition of an additional sub-115 

model to account for contaminated TTP samples, implemented as a probability component to 116 

describe differences in the probability of TTP contamination over time and between the 117 

different study sites.  118 

 119 
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 120 

Modelling of MBL data 121 

The MBL data was described through a sputum sub-model describing the total bacterial load 122 

in the patient’s sputum. The sputum model that was used as a starting point included a single 123 

mycobacterial subpopulation with exponential kill where bacterial load in sputum (Bs) over 124 

time on treatment (tt) was calculated according to: 125 

𝐵𝑠(𝑡𝑡) = 𝐵0,𝑠 × 𝑒−𝑘×𝑡𝑡 (Eq. 1) 126 

where the MBL prediction was set equal to the bacterial load (i.e. MBL(tt)=Bs(tt)). The B0,s 127 

parameter describes the initial (pre-treatment) bacterial load and k is a first-order kill rate 128 

exhibited by the combination treatment. In this way, the drug effect was modelled as an 129 

“on/off” treatment effect  not accounting for drug concentrations, i.e. this concentration-130 

independent approach ignores pharmacokinetics. As this work developed, we tested a model 131 

that included two mycobacterial subpopulations (B1s and B2s, respectively) with first-order 132 

rate constants for bacterial killing (k1 and k2, respectively) according to:  133 

𝐵𝑠(𝑡𝑡) = 𝐵10,𝑠 × 𝑒−𝑘1×𝑡𝑡 + 𝐵20,𝑠 × 𝑒−𝑘2×𝑡𝑡 (Eq. 2) 134 

where B10,s and B20,s describe the initial bacterial load of B1 and B2, respectively. In addition 135 

to the two subpopulation model, a three subpopulation was also tested. As a molecular 136 

measure we assumed that MBL captured a total population and, thus, the prediction of MBL 137 

was set to the sum of the different bacterial subpopulations in sputum. The MBL data that 138 

were below the LLOQ which was set to 100 CFU/mL in this work was handled using the M3 139 

method within NONMEM which is a preferred way for missing data (13). 140 

 141 

 on A
ugust 8, 2019 at S

T
 A

N
D

R
E

W
S

 U
N

IV
http://aac.asm

.org/
D

ow
nloaded from

 

http://aac.asm.org/


8 
 

 142 

Modelling of MBL-TTP data  143 

For modelling TTP, the sputum sub-model established based on the MBL data was extended 144 

with additional sub-models (a schematic representation of how the different sub-models 145 

connect can be seen in Figure 1). Thus, the sputum sub-model had a central role within the 146 

model, and acted as the main driver for time-varying changes in both biomarkers.   The 147 

starting point for model development of TTP-related sub-models was derived from a previous 148 

TTP model (8). A mycobacterial growth component described bacterial growth in the liquid 149 

culture. The starting point for bacterial growth (the inoculum) for each liquid culture sample 150 

was the predicted bacterial load at the corresponding time-point from the sputum sub-model 151 

according to: 152 

𝐵𝑠(𝑡𝑡 = 𝑡𝑠𝑎𝑚𝑝𝑙𝑒) → 𝐵𝑐(𝑡𝑐 = 0) (Eq. 3) 153 

where tsample is the time-point of sampling (relative to start of treatment) and Bc is the bacterial 154 

density in liquid culture and tc is time since liquid culture inoculation. In general for 155 

equations, tt (time since start of treatment) signifies processes in the patient (e.g. bacterial 156 

killing) whereas tc (time since MGIT incolulation) mainly concerns processes within the 157 

liquid culture. The existence of more than one mycobacterial subpopulation that we explored 158 

for the sputum model (e.g. in Equation 2) was considered for the mycobacterial growth model 159 

also in which the starting point for bacterial growth was described by Equations 4 and 5.  160 

𝐵1𝑠(𝑡𝑡 = 𝑡𝑠𝑎𝑚𝑝𝑙𝑒) → 𝐵1𝑐(𝑡𝑐 = 0) (Eq. 4) 161 

𝐵2𝑠(𝑡𝑡 = 𝑡𝑠𝑎𝑚𝑝𝑙𝑒) → 𝐵2𝑐(𝑡𝑐 = 0) (Eq. 5) 162 

Upon exploring the existence of more than one subpopulation in the liquid culture, potential 163 

qualitative differences between subpopulations were tested including different growth rates 164 
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for the subpopulations and a transfer between subpopulations. Models were also tested 165 

including the existence of a non-growing subpopulation (alongside a growing population) to 166 

explore if this could explain an expected time-varying change in the MBL vs TTP relationship 167 

(similar hypotheses exists for the CFU vs TTP relationship) (14). Exponential, logistic and 168 

Gompertz growth functions were tested. 169 

The mycobacterial growth model was coupled to a hazard model to translate growth in the 170 

MGIT liquid culture to a probability of a positive TTP signal.  171 

Bacterial population density inside the liquid culture was the assumed contributor to the 172 

probability of a positive TTP signal. Bacterial population was an assumed proxy for carbon 173 

dioxide production, the known driver for a positive TTP signal (in this bacteria were assumed 174 

to be growing and this carbon dioxide producing). Note that no formal distinction was made 175 

between bacterial growth and carbon dioxide production which means that the bacterial 176 

grwoth represent a combination of carbon dioxide production and bacterial growth. A scaling-177 

parameter controlled how much each bacterium inside the liquid culture contributed to the 178 

probability of a positive signal, as seen in Equation 6.  179 

ℎ(𝑡𝑐) = 𝐵𝑐(𝑡𝑐) × 𝑆𝑐𝑎𝑙𝑒 (Eq. 6) 180 

where h is the hazard and described the instantaneous probability for a positive signalling 181 

event and Scale is a scaling-parameter controlling each bacterium’s contribution to the hazard. 182 

Next, the integral of the hazard over time (H) were calculated using Equation 7. 183 

𝐻(𝑡𝑐) = ∫ ℎ(𝑡𝑐)𝑑𝑡
𝑡𝑐

0
) (Eq. 7) 184 

The survival (S, the probability over time to remain free of a positive signalling event) was 185 

calculated by Equation 8. 186 

𝑆(𝑡𝑐) = 𝑒−𝐻(𝑡𝑐)  187 
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For mycobacterial growth models including more than one mycobacterial subpopulation, we 188 

tested for differences in the degree of contribution to the probability of a positive TTP signal 189 

for each subpopulation.   190 

Developing our work further, a component for the probability of contaminated TTP samples 191 

was developed. Tested models included constant (Equation 9) and linearly increasing 192 

probabilities (Equation 10) of contamination over time on treatment.  193 

𝑝𝑐𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑡𝑒𝑑,𝑇𝑇𝑃 = 𝑝𝑐𝑜𝑛,𝑏𝑎𝑠𝑒 (Eq. 9) 194 

𝑝𝑐𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑡𝑒𝑑,𝑇𝑇𝑃 = 𝑝𝑐𝑜𝑛,𝑏𝑎𝑠𝑒 + 𝑘𝑝 × 𝑡𝑡 (Eq. 10) 195 

where pcontaminated,TTP is the probability of a contaminated TTP sample, pcon,base is the baseline 196 

probability of a contaminated TTP sample and kp is a linear time-varying increase of 197 

probability of a contaminated TTP sample. Since the sputum sampling and testing for 198 

contamination differed between the sites, models were tested where separate contamination-199 

related parameters were estimated for each site.  200 

At the beginning of model development, negative TTP samples were handled within the time-201 

to-event approach using right-censoring (the standard procedure for survival modelling). This 202 

was compared to a model where negative samples were handled by treating negative TTP 203 

samples as a different type of data observation in a separate sub-model (10). The probability 204 

of a negative TTP sample was described by an Emax relationship between bacterial load in 205 

sputum and the probability of a negative TTP (pnegative,TTP) according to Equation 11 206 

(exemplified for a two subpopulation sputum model). 207 

𝑝𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒,𝑇𝑇𝑃 = 1 −
𝑝𝑚𝑎𝑥×(𝐵1𝑠(𝑡𝑡)+𝐵2𝑠(𝑡𝑡))

𝛾

𝐵50
𝛾

+(𝐵1𝑠(𝑡𝑡)+𝐵2𝑠(𝑡𝑡))
𝛾  (Eq. 11) 208 
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where pmax is the maximal probability of a positive TTP sample, B50 is the bacterial load of 209 

subpopulation 1 and subpopulation 2 in sputum at which the probability of a positive TTP 210 

value is half maximal and γ is a gamma-factor for the shape of the non-linear relationship. 211 

 212 

Covariate model 213 

Rifampicin dose group of 35- versus 10- mg/kg was tested as a covariate on the bacterial kill 214 

rate in the sputum sub-model as well as HIV status on baseline bacterial load. Another 215 

potential covariate to evaluate would be to test if pooled versus early morning sputum 216 

samples gave different baseline bacterial load (pooled samples are known to have shorter 217 

TTP) but this was note tested in this analysis. The reasons were that a graphical exploration of 218 

the data revealed no apparent differences between baseline TTP for pooled versus early 219 

morning samples and that all samples from each site had the same sampling. This would in 220 

turn have made it difficult to separate this effect between sampling method and site or region.  221 

Another relevant covariate would have been lung cavitation on baseline bacterial load but this 222 

information was unavailable in the current dataset. 223 

 224 

 225 

Utility of the model 226 

The intended real-life use of the model was evaluated by re-estimating the final combined 227 

MBL-TTP model by only using the MBL or TTP data, respectively, to explore if the final 228 

combined model can be applied to predict TTP from MBL data and vice versa, in trials where 229 

only MBL or TTP are collected. Note that this was an actual re-estimation (i.e. not 230 
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MAXEVAL=0) but parameters strongly associated with the biomarker left out of the 231 

estimation were fixed to that of the combined MBL-TTP model. Furthermore, the model re-232 

estimated with TTP only data can potentially be used as a standalone TTP model to analyse 233 

future TTP only datasets (but note that this work does not include validation for prospective 234 

use per se). In this situation, the MBL sub-model parameters were fixed to the estimates from 235 

the combined model when estimating only TTP data and vice versa. The evaluation was based 236 

on graphical diagnostic plots, plausibility of parameter estimates and uncertainty in parameter 237 

estimates.  238 

 239 

Data analysis and model evaluations 240 

The data were analysed in NONMEM 7.4 with the importance sampling (IMP) estimation 241 

method. The Laplacian estimation method did not give stable estimation for analysing MBL 242 

and TTP simultaneously. Detailed estimation settings are listed in Supplementary data S1. 243 

Data handling and plotting were done in R 3.5.1 using Xpose 4.6.1 (15) to make diagnostic 244 

plots assisted by PsN 4.8.0 (16). Models were compared based on difference in objective 245 

function value (dOFV) using the likelihood ratio test at the 1% significance level but also 246 

based on uncertainty in model parameters. 247 

Models were assessed graphically using visual predictive checks (VPCs). For MBL, 248 

conventional VPCs were generated which compared percentiles of observed and simulated 249 

data within the same plot. If the observed and simulated data agreed, it provided evidence that 250 

the model provided a good description of the observed data.  251 

For TTP (time-to-event data), Kaplan-Meier VPCs (see e.g. (17)) were produced, which 252 

compared observed and simulated Kaplan-Meier curves for TTP at each week. Finally, VPCs 253 
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were performed for TTP versus MBL to assess if the model could mimic the observed pattern 254 

(relationship) between the biomarkers.  255 
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Results 256 

Patient data 257 

Patient baseline characteristics are summarized in Table 1. For MBL, 851 samples were 258 

analysed of which 277 samples (32.5%) were below the employed LLOQ of 100 CFU/mL. 259 

For TTP, 659 samples were analysed of which 192 samples (29.1%) were contaminated and 260 

90 samples (13.7%) were negative (i.e. the TTP was greater than 42 days). 261 

 262 

Sub-model for MBL data 263 

The developed sputum model included two mycobacterial subpopulations, B1 and B2 where 264 

the treatment had exponential killing of both subpopulations where the MBL prediction was 265 

assumed to represent the total bacterial population (i.e. MBL(tt)=B1s(tt)+B2s(tt)). The B1 266 

subpopulation had greater abundancy (~99%) than B2 (~1%) at pre-treatment and the B1 267 

subpopulation was also more easily killed than B2 (B1 killed ~3.5 times more rapidly than 268 

B2). Thus, B2 were more tolerant to treatment-induced bacterial killing which led to that B2 269 

becoming more abundant than B1 during late treatment. A statistically significant increased 270 

kill (1.66 fold) of B1 (but not B2) by rifampicin 35 vs 10 mg/kg (p=0.002) was included in 271 

the model. The HIV covariate on initial bacterial load was not statistically significant. The 272 

MBL model gave good description of the observed data according to a VPC (Figure S1). 273 

Inclusion of two mycobacterial subpopulations in the sputum model gave a significantly 274 

better fit to the observed data than a sputum model only including a single subpopulation 275 

(p<0.00001). The treatment had first-order killing of both subpopulations (included as an 276 

“on/off” treatment effect). In the final MBL sputum sub-model bacteria were assumed to be 277 
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unable to grow or transfer between subpopulations in sputum. A three subpopulation model 278 

was not supported by the data as it resulted in an unstable estimation. 279 

Inclusion of inter-individual variability in initial bacterial load of both subpopulations (B1 and 280 

B2), also including a correlation between the subpopulations led to a significantly better fit to 281 

the observed data and was therefore included in the final model.  282 

The final model for MBL with an intended use of modelling future MBL only datasets, 283 

referred to as the standalone MBL model is given in Supplementary data S2. Parameter 284 

estimates are shown in Supplementary data S3.  285 

 286 

Combined MBL-TTP model 287 

The structure of the final combined MBL-TTP model is shown in Figure 1. The dynamics of 288 

each sub-model are shown for baseline and week 12 samples in addition to week 4 (which 289 

was considered relevant since it’s located in the transition between the initial rapid decline 290 

and the later slower decline for bacterial load in sputum) for a typical individual in Figure 2. 291 

The final combined MBL-TTP model included the same sputum model as described above for 292 

the standalone MBL model. The same subpopulations as described within the sputum model 293 

existed within the mycobacterial growth model where only the B1 population could grow. 294 

However, B2 bacteria were able to transfer into B1 in the liquid culture (Figure 1). The model 295 

component for contaminated TTP samples included a linear relationship between time on 296 

treatment and risk of contamination. Finally, the model included a component for negative 297 

TTP including a non-linear (Emax) relationship between bacterial load in sputum and 298 

probability of negative TTP. Figure 3 compares sample loss due to negative and/or 299 

contaminated samples for TTP vs MBL. The figure shows that both MBL and TTP have 300 

similar degree of negative samples (Figure 3a) but due to the much higher contamination of 301 
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TTP (Figure 3b), the MBL assay gives more information in terms of non-contaminated, 302 

positive samples (Figure 3c). 303 

Simulated data from the final combined MBL-TTP model gave good description of the 304 

observed data which showed that the model was appropriate given the data. A plot of 305 

observed and model-predicted TTP vs MBL shows that the final model accurately described 306 

the observed pattern between the biomarkers (Figure 4). A VPC of MBL vs time (Figure 5) 307 

and a Kaplan-Meier VPC of TTP vs time in liquid culture for different treatment weeks 308 

(Figure 6) also showed that the model described the observed data well. Parameter estimates 309 

of the final combined MBL-TTP model are shown in Table 2. Precision looked fine for all 310 

parameters. All parameters were estimated on linear scale. 311 

For the mycobacterial growth model only B1 could grow but B2 could transfer into B1. A 312 

transfer rate parameter (k21) described the transfer between B2 and B1 and was set to the same 313 

value as the growth rate (kG). Estimation of a unique k21 led to an unstable model and was not 314 

statistically significant (p=0.176). The growth function that best described the growth of B1 315 

was found to be the Gompertz model.  316 

Bacterial growth was linked to the probability of a positive TTP signal using a time-to-event 317 

approach where only B1 contributed to the probability (hazard) of a positive signal (since B2 318 

was non-growing B2 do not contribute directly to hazard). The contribution of each B1 319 

bacterium to the probability of a positive signal was determined by a scaling-parameter. The 320 

scaling-parameter was time-varying in the final model where the value decreased 321 

exponentially from a baseline value down to a steady state value. Having a similar time-322 

varying component for other potentially relevant parameters, such as the growth rate (kG) or 323 

introducing a lag-time for growth, did not lead to a stable model. 324 
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The model for contaminated samples was different between sites. However, parameters 325 

estimated from the Tanzania site were considered the most appropriate model. For Tanzania, 326 

the observed contamination rate was low initially (~10%) and increased linearly to reach a 327 

contamination rate of ~60% by week 12. For Malawi, contamination was not determined (i.e. 328 

no blood agar test was done). For Mozambique, contamination was moderately high (~30-329 

40%) across all time-points. A VPC for contamination vs time (Figure S2) confirmed that the 330 

model gave a good description of the observed contamination data. 331 

A sub-model was included in the final model to handle negative TTP. The probability of a 332 

negative sample increased as bacterial load in sputum decreased (10). An inhibitory sigmoidal 333 

Emax-model described the relationship where the lowest possible probability of a negative 334 

sample was estimated to be 3.3% and occurred at a very high bacterial density. The 335 

probability of a negative sample was half-maximal at a bacterial density of 48.8 CFU/mL. 336 

This is a rather low number which represents roughly half the LLOQ of 100 CFU/mL which 337 

was used in this analysis for MBL. A model where negative TTP samples were handled using 338 

right-censoring within the hazard model (which is common practice for time-to-event models) 339 

did not lead to an acceptable description of the observed data and was therefore discarded. 340 

Inter-individual variability was included for the scaling-parameter that accounted for the 341 

contribution of B1 to the probability of a positive signalling event in the liquid culture. 342 

 343 

Utility of the final model 344 

It was possible to re-estimate the final combined MBL-TTP model using only MBL data if the 345 

TTP-related parameters were fixed to the parameters of the final model, where the model gave 346 

good description of the observed MBL data (Figure S3). The final model with the TTP-related 347 

parameters fixed can be found in Supplementary data S2.  Likewise, we successfully re-348 
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estimated the final model with only TTP data with MBL-related parameters fixed to the final 349 

model estimates with good fit to the observed data (Figure S4). The model estimated with 350 

TTP only data can be used as a standalone TTP model to estimate TTP only datasets. The 351 

final MBL-TTP model with the MBL-related parameters fixed can be found in Supplementary 352 

data S2. 353 

A comparison of parameter estimates for the final combined MBL-TTP model estimated 354 

including all data, the final model re-estimated with MBL or TTP data only and the 355 

standalone MBL model can be found in Supplementary data S3. There was consistency in the 356 

estimated parameters between all the models. The covariate effect of enhanced performance 357 

of 35 mg/kg rifampicin was estimable using all models, i.e. using MBL or TTP data only as 358 

well as with all data.   359 
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Discussion 360 

This analysis describes the development of a pharmacometric model to identify the 361 

relationship between two critical measures of viable count; MBL and TTP based on data 362 

collected during 12 weeks in drug-susceptible TB patients treated with the standard drug 363 

combination. In this model the relationship between the biomarkers was identified 364 

successfully.  365 

To make an effective model it was necessary to include components that described the 366 

different data types; MBL is a continuous variable whereas TTP is a time-to-event variable 367 

indirectly reflecting bacterial load. The best sputum model (describing the underlying 368 

bacterial load in sputum) was achieved when we included two mycobacterial subpopulations 369 

(B1 and B2) with treatment resulting in an exponential fall in viable count for both. The 370 

predicted MBL was assumed to be the total bacterial population in sputum (i.e. 371 

MBL(tt)=B1s(tt)+B2s(tt)). Although the drug effect was included as an “on/off” treatment 372 

effect which represents a limitation of the present study, in the future it can/will be replaced 373 

by exposure-response relationships in later analyses. In our model the B1 subpopulation was 374 

more abundant than B2 at pre-treatment whereas B2 became more abundant than B1 on late 375 

treatment days since B1 was killed more rapidly than B2. This is similar to the report of 376 

Honeyborne et al. (5) although their work only included MBL data. We agree with their 377 

analysis that the  B2 population may represent persisters (5). A three subpopulation model 378 

was tested during the model development. A three subpopulation model reflective of 379 

multiplying, semi-dormant and persister cells would have been a more mechanistically 380 

plausible structure compared to the two subpopulations described in this work as TB is known 381 

to exist in at least three subpopulations (18). To interpret these results we may need to 382 

consider that the B1 and B2 subpopulations may also partly contain semi-dormant cells 383 

although to what extent this occurs is unknown. This also had implications when exploring 384 
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the relationship between MBL and TTP; with only two subpopulations included we were not 385 

able to appropriately explore our hypothesis that MBL reflects more bacterial subpopulations 386 

than TTP (i.e. we could not explore if TTP quantified semi-dormant but not persister cells 387 

without semi-dormant cells in the model). According to the final model structure both 388 

subpopulations contributed to MBL and TTP which can be interpreted as that both biomarkers 389 

reflect the same subpopulations. However, we do not have this view of our results, we still 390 

hypothesize that MBL may reflect more subpopulations than TTP and that our results just 391 

confirm that there is a large overlap in what subpopulations each biomarker captures. Yet we 392 

found that the three subpopulation model was not stable although the reasons for this are 393 

unknown. 394 

However, one potential explanation to the instability is that the clinical data used for this 395 

analysis contained a sub-optimal number of “critical” data points where persisters are 396 

expected to be the dominating subpopulation which we believe occur primarily at late time-397 

points (Figure 3). If a lower MBL LLOQ than 100 CFU/mL is applied in a future analysis it 398 

may lead to more critical data points. Another option where critical persister-dominated data 399 

points can be studied in controlled settings could be in vitro systems. Alternatively, the MBL 400 

information can be supplemented with information from staining-based techniques to identify 401 

phenotypic resistance based on lipid bodies (19), a study that is currently underway. 402 

An important advance in this model is the way in which it includes a sub-model that allowed 403 

us to predict TTP in a mechanistically plausible manner (Figure 1). The sputum model acted 404 

as the fundamental hub within the model where changes in the predicted bacterial load in 405 

sputum affected both the resulting MBL and TTP predictions. As anticipated, the relationship 406 

between MBL and TTP lies in the sputum model. The most essential way that the sputum 407 

model affected the TTP predictions was through the mycobacterial growth model describing 408 

growth in liquid culture as well as the hazard model which described how growth affected the 409 
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probability of a positive signal. This way of linking sub-models has been described in other 410 

time-to-event models only describing TTP data (8–10). Although the general structure of our 411 

model is similar to previous reports, what makes our model unique is the description of two 412 

distinct bacterial subpopulations both in the sputum model and in the mycobacterial growth 413 

model. The underlying study had no experimental data which could distinguish between the 414 

two populations, this was instead described by the mathematical model. In the liquid culture, 415 

B2 was non-growing but could indirectly contribute to growth by transferring into B1 416 

potentially reflecting a shift to a more metabolically active state triggered by the nutrient-rich 417 

liquid culture media. The transfer rate of B1 transferring to B2 (k21) was set to the same value 418 

as the bacterial growth rate (kG). This was reasonable given the insufficient data to inform 419 

differences in these parameters. Furthermore, when the mycobacterial growth model was 420 

linked to the hazard model which translates the growth in the liquid culture to a probability of 421 

a positive signal, only B1 contributed to the probability of a positive TTP. As the underlying 422 

reason for a positive signalling is carbon dioxide production this implies that non-growing B2 423 

bacteria do not contribute measurably to carbon dioxide production. Both findings, i.e. that B2 424 

is non-growing and do not produce carbon dioxide were driven by the data and are important 425 

observations. It may explain a disproportionally greater TTP prolongation on early versus late 426 

treatment days as not only the MGIT inoculum decrease each week, the proportion of bacteria 427 

that can grow and readily produce carbon dioxide immediately upon liquid culture inoculation 428 

has also decreased (i.e. the B1/B2 ratio decrease with treatment time). This observation agrees 429 

with and provide further insight into a hypothesis generated in a non-model-based analysis 430 

comparing CFU, time to appearance of CFU and TTP (20).  In that study (20) there was 431 

significant correlation between time to appearance of the first CFU colony on solid media and 432 

TTP suggesting that the fastest growing bacteria has a disproportionally larger contribution to 433 

the carbon dioxide production in liquid culture, i.e. a similar interpretation as can be drawn 434 
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from our work. Another finding within our model that also contributes to this relationship is 435 

the time-varying scaling-parameter which decreased with time on treatment. The time-varying 436 

scaling parameter is, once again, a data-driven finding. Future in vitro work should explore 437 

the biological explanation.  438 

Previous models have treated TTP as a continuous variable (21–24). Our work suggests that 439 

this is not the optimal way to handle these data as time-to-positivity reflects time-to-event 440 

data. As was the case for a previous publication, a time-to-event analysis of TTP revealed an 441 

exposure-response relationship of rifampicin (8) that was undetected for the same dataset 442 

when the TTP data was treated as continuous data (25).  443 

One of the challenges of modelling data from TB clinical trials is that previously published 444 

MGIT-TTP models lack components for contamination, which is a significant confounder of 445 

this assay. Thus, the contamination sub-model is a significant improvement on the previously 446 

published models for TTP since it allows for real-world clinical trial simulations. Our model 447 

can be used to make simulations prior to performing clinical TTP studies to predict the degree 448 

of TTP sample loss. We regard the predicted and observed degrees of contamination as high 449 

(Figure 3) suggesting that TTP can be unreliable and difficult to interpret, especially during 450 

late treatment thus, making it meaningful to get a reliable expectation on the degree of sample 451 

loss. Significantly, it means that MBL, which is not affected by contamination is a significant 452 

improvement over TTP as shown in Figure 3. The typical patient is expected to have greater 453 

sample loss for TTP than MBL when accounting for both contamination and negative 454 

samples. The included component for contaminated TTP was based on time on treatment and 455 

was site-dependent but we recommend the contamination model derived from Tanzania for 456 

performing clinical trial simulations since contamination for Tanzania data started low at 457 

baseline and increased with time on treatment, which represents the most plausible 458 

contamination pattern. It has been shown that during early treatment patients produce sputum 459 
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of better quality than later on treatment where patients get healthier which is associated with a 460 

relative inability to produce sputum (26).   461 

A sub-model was included to describe negative TTP samples which predicted that lower 462 

bacterial densities in sputum gave higher probability of a negative TTP sample. This way of 463 

handling negative TTP samples is similar as a previous model for TTP (10). An Emax model 464 

described this relationship (Figure 2e) and predicted a probability of a negative TTP of 3.3% 465 

at very high bacterial densities suggesting that a fraction of TTP samples will always be 466 

negative. The model by Svensson and Karlsson (10) predicted that 3.1% will always be 467 

negative which is similar to our value. 468 

The developed model gave good fit to the observed data according to the diagnostic plots in 469 

Figures 4-6. In addition, the parameter precision in the parameters was overall low (Table 2). 470 

This shows that from a technical model validation perspective, the presented model is valid. 471 

In this work we identified a statistically significant increased (1.66 fold) killing effect for 35 472 

vs 10 mg/kg rifampicin which indicates that the joint collection of MBL and TTP data used 473 

along with our modelling approach is a powerful strategy for detecting inter-regimen 474 

differences for Phase IIb trials. If studies are designed and analysed according to our approach 475 

Phase IIb trial performance may be simplified and could require fewer patients to be recruited. 476 

However, this was based on data from 12 patients and the model as such was not tested on 477 

any external data. 478 

The utility analysis showed that the model can be used to analyse MBL data alone to predict 479 

TTP and vice versa if parameters related to the excluded biomarker are fixed according to 480 

Supplementary data S3. We argue that using the model in this way should be valid for data 481 

from drug-susceptible TB patients. However, for drug-resistant TB the bacterial killing may 482 

be slower and initial bacterial load as well as growth rate in liquid culture may deviate and 483 
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studies investigating this are required. One of the most encouraging aspects of this model is 484 

that the parameter for difference in bacterial kill for 35 vs 10 mg/kg rifampicin was 485 

identifiable when using data from one or the other biomarker or when using data from both.  486 

The original study (11) which reports the underlying data had not gone through formal peer-487 

review by the time of manuscript submission of the present work. 488 

The developed pharmacometric model predicted a general trend of lower probability of TTP 489 

culture conversion at week 8 for higher bacterial loads compared to lower bacterial loads. 490 

This conclusion could probably not have been drawn as easily directly from the observed 491 

data. In the observed data the mean baseline TTP was 5.7 days for patients with culture 492 

negativity at week 8 and the mean baseline TTP was 6.0 for patients with culture positivity at 493 

week 8. For other time-points (including weeks 1, 4 and 6), the mean TTP was also similar 494 

between patients with and without culture conversion at week 8. However, for week 2 there 495 

mean TTP was higher for patients with culture negativity at week 8 (15.6 days) compared to 496 

patients with culture positivity at week 8 (9.8 days). 497 

In conclusion, our work reports a practical combined MBL-TTP model that relates the 498 

changing bacterial load for both markers. We also developed two sub-models that can be used 499 

to analyse TTP and MBL separately. The combined MBL-TTP model can be used to predict 500 

TTP from MBL data and vice versa and could be used to re-analyse historical trials. We 501 

confirm and delineate the extent that MBL gives higher proportion of positive samples than 502 

TTP due to high proportion of contaminated TTP samples. The standalone MBL model can be 503 

used to analyse clinical trials where exposure-response of drugs and regimens quantified with 504 

only MBL is of interest.   505 
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Figures legends 613 

Figure 1 Schematic representation of the final combined MBL-TTP model. The treatment is 614 

represented by an “on/off” effect i.e. the drugs kill the bacteria in the presence of drugs. The 615 

killing of bacteria, represented by two mycobacterial sub-populations in the sputum (B1s and 616 

B2s) is governed by two first-order kill-rates (k1 and k2) in the sputum model. The sum of B1s 617 

and B2s constitutes the MBL sub-model and gives the prediction of MBL (MBL model, 618 

lowest middle box). The predicted bacterial densities of the sub-populations in sputum (B1s 619 

and B2s) are the inoculum for the mycobacterial growth model (top middle box), at the 620 

corresponding sampling time point. Only B1c in the liquid culture has the ability to grow. The 621 

B2c cannot grow but can transfer into the B1c subpopulation with a first-order rate of k21. A 622 

TTP model (top right box) translates the growth within the mycobacterial growth model to a 623 

positive TTP signal where only B1c contributes to the probability of a positive TTP signal. 624 

This is done using survival modelling, where B1c multiplied by a time-varying factor accounts 625 

for the relative contribution of each B1c bacterial cell to the probability of a positive signal. 626 

Negative TTP samples are described by a non-linear (Emax) relationship between the bacterial 627 

density in sputum (B1s+B2s) and probability of a negative TTP sample (upper middle box). 628 

Contaminated TTP samples are described by a function for the probability of a contaminated 629 

sample that increase linearly with time on treatment (lower middle box). 630 

Abbreviations: k1; first-order bacterial kill rate of bacterial sub-population B1s, k2; first-order 631 

bacterial kill rate of bacterial sub-population B2s , MBL; molecular bacterial load, TTP; time-632 

to-positivity,  633 

 634 

Figure 2 Typical model predictions within each component of the final combined MBL-TTP 635 

model for a patient treated with isoniazid, pyrazinamide, ethambutol and 10 mg/kg rifampicin. 636 
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The (a) panel shows predictions from the sputum model where the line represents the 637 

prediction of MBL. The (b) panel shows predictions of the bacterial density in the liquid 638 

culture. Remaining panels show the predicted time-varying probability of not having a 639 

positive TTP signal (c), probability of contaminated TTP samples (d) and probability of 640 

negative TTP samples (e). The different symbols in panels (a), (d) and (e) show the dynamics 641 

within the corresponding sub-model where circles represent an early baseline sample, squares 642 

represent an intermediate (4-week) sample and triangles represent a late (week 12) sample. In 643 

panels (b) and (c), the circles represent an early (baseline) sample, the squares represent an 644 

intermediate (4-week) sample and the triangles represent a late (week 12) sample. 645 

Abbreviations: MBL; molecular bacterial load, TTP; time-to-positivity 646 

 647 

Figure 3 Sample loss for MBL (filled circles) and TTP (filled triangles) due to (a) negative 648 

samples, i.e. assuming no loss of samples due to contamination, (b) contaminated samples, 649 

assuming no loss of samples due to negativity and (c) total sample loss reflecting the 650 

combined sample loss due to negative samples and contaminated samples. 651 

Abbreviations:  TTP; time-to-positivity, MBL; molecular bacterial load 652 

 653 

Figure 4 The relationship between TTP and MBL. The VPC shows the median (solid line) 654 

and 5
th

 and 95
th

 percentiles (lower and upper dashed lines, respectively) of observed data 655 

compared to the corresponding percentiles of simulated data (shaded areas) based on 1000 656 

simulated datasets where lighter grey are percentiles and darker grey is median. The open 657 

circles show the actual observations. 658 
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Abbreviations: TTP; time-to-positivity, MBL; molecular bacterial load, VPC; visual 659 

predictive check 660 

Figure 5 Visual predictive check (VPC) for the MBL data using the final combined MBL-661 

TTP model. The VPC shows the median (solid line) and 5
th

 and 95
th

 percentiles (lower and 662 

upper dashed lines, respectively) of observed data compared to the corresponding percentiles 663 

of simulated data (shaded areas) where lighter grey are percentiles and darker grey is median. 664 

The open circles show the actual observations and the dotted line is the lower limit of 665 

quantification for MBL. The shaded areas represent 95% confidence interval of simulated 666 

data based on 1000 simulated datasets. 667 

Abbreviations: MBL; molecular bacterial load 668 

Figure 6 Kaplan-Meier visual predictive check (VPC) of the TTP data using the final 669 

combined MBL-TTP model. The VPC shows the observed Kaplan-Meier (survival) curve for 670 

each weeks’ TTP as solid lines and the simulated Kaplan-Meier 95% confidence intervals are 671 

shown as blue shaded areas (n=1000 simulated datasets). 672 

Abbreviations: TTP; time-to-positivity, MGIT; mycobacterial growth incubator tube  673 
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Tables 674 

Table 1 – Baseline patient characteristics for all data and by study site 675 

Parameter All sites 

(n=105) 

Malawi 

(n=20) 

Mozambique 

(n=53) 

Tanzania 

(n=32) 

Weight (kg) 54 (37-74) 55.8 (43-70) 54.0 (37-74) - 

Male sex (n) 77 (73%) 14 (70%) 35 (66%) 28 (88%) 

HIV positive (n) 45 (42.9%) 9 (45.0%) 36 (67.9%) 0 (0%) 

Rifampicin 10 mg/kg (n) 93 (89%) 20 (100%) 53 (100%) 20 (63%) 

Rifampicin 35 mg/kg (n) 12 (11%) 0 (0%) 0 (0%) 12 (38%) 

Baseline TTP (days) 4.22 (1.02-

23.1) 

6.02 (3.14-

16.10) 

4.13 (2.00-9.60) 3.21 (1.02-

23.1) 

Negative baseline TTP 

(n)
a
 

2 (1.90%) 0 (0%) 2 (3.77%) 0 (0%) 

Baseline MBL (log10 

CFU/mL) 

5.91 (2.62-

8.37) 

5.43 (3.61-

7.83) 

6.35 (2.62-8.28) 5.26 (3.04-

8.37) 

Negative baseline MBL 

(n)
b
 

1 (0.95%) 0 (0%) 1 (1.89%) 0 (0%) 

Data are median values (ranges) or no. (%) of patients. 676 

aDefined as a TTP longer than 42 days bDefined as a log10 MBL value below 2 677 

Abbreviations: TTP; time-to-positivity, MBL; molecular bacterial load 678 

 679 

  680 
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Table 2 – Parameter estimates of the final combined MBL-TTP model 681 

Parameter Description Estimate  

Sputum model 

B10,s (CFU/mL) Initial bacterial load of mycobacterial 

subpopulation 1 in sputum 

0.365×10
6
 (28.8) 

k1 (week
-1

) First-order bacterial kill rate of subpopulation 1 in 

sputum 

1.71 (8.70) 

B20,s (CFU/mL) Initial bacterial load of mycobacterial 

subpopulation 2 in sputum 

0.00430×10
6
 (51.4) 

k2 (week
-1

) First-order bacterial kill rate of subpopulation 2 in 

sputum 

0.494 (9.50) 

Dose35mg Fold increase in bacterial killing of k1 by 35 versus 

10 mg/kg rifampicin 

1.66 (14.0) 

IIV B10,s (%) Inter-individual variability in B10,s 239 (9.18) 

IIV B20,s (%) Inter-individual variability in B20,s 227 (10.9) 

Corr B10,s – 

B20,s (%) 

Correlation between B10,s and B20,s 45.4 (15.6) 

ε (%) Additive error on log scale for MBL data 79.7 (4.96) 

Mycobacterial growth model 

kG (day
-1

)
a
 Mycobacterial growth of subpopulation 1 in liquid 

culture 

0.395 (8.50) 

k21 (day
-1

)
a
 Transfer rate from subpopulation 2 to subpopulation 

1 in liquid culture 

0.395 (8.50) 

Bmax (CFU/mL) Maximal bacterial load in liquid culture  166×10
6
 (24) 

TTP model 

ScaleBL Baseline value of scaling parameter accounting for 

the contribution of subpopulation 1 bacteria to the 

probability of a positive TTP signal 

6.68×10
-9

 (31.6) 

IIV ScaleBL (%) Inter-individual variability in ScaleBL 80.6 (18.1) 

ScaleSS Steady state value of scaling parameter 0.601×10
-9

 (24.3) 

kS (week
-1

) First-order rate constant for time-varying change of 

the scaling parameter 

1.28 (25.1) 

Model for negative TTP samples 

pmax Maximal probability of a positive TTP sample 0.967 (1.50) 

B50 Bacterial load of subpopulation 1 and subpopulation 

2 in sputum at which the probability of a positive 

TTP value is half maximal 

49.8 (33.7) 

γ Gamma-factor for non-linear Emax relationship for 

negative TTP samples 

0.756 (18.9) 

Model for contaminated TTP samples 

pcon,base
c
 Baseline probability of a contaminated TTP sample 0.0910 (39.0) 

kp
c
 Linear time-varying increase of probability of a 

contaminated TTP sample 

0.0416 (13.9) 
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The reported values are the final estimates with relative standard error (RSE) shown in brackets as the 682 

approximate coefficient of variation (%CV) on standard deviation scale. The IIV and residual error are shown as 683 

the approximate %CV on standard deviation scale (calculated using a simple square-root formula, 684 

%CV=100×√(variance)). Correlation (Corr B10,s – B20,s) is reported as the percentage correlation coefficient. 685 

The mathematical structure for the final model was as follows (final NONMEM code in Supplementary data S2): 686 

𝐵1𝑠(𝑡𝑡) = 𝐵10,𝑠 × 𝑒−𝑘1×𝑡𝑡×Dose35𝑚𝑔 (B1 subpopulation in sputum) 687 

𝐵2𝑠(𝑡𝑡) = 𝐵20,𝑠 × 𝑒−𝑘2×𝑡𝑡 (B2 subpopulation in sputum) 688 

where Dose35mg is 0 for 10 mg/kg rifampicin and the individually predicted MBL=B1s(tt)+B2s(tt) 689 

𝑑𝐵1𝑐

𝑑𝑡𝑐
= 𝐵1𝑐(𝑡𝑐) × 𝑘𝐺 × log (

𝐵𝑚𝑎𝑥

𝐵1𝑐(𝑡𝑐)+𝐵2𝑐(𝑡𝑐)
) + 𝑘21 × 𝐵2𝑐(𝑡𝑐) (B1 subpopulation in liquid culture) 690 

𝑑𝐵2𝑐

𝑡𝑐
= −𝐵2𝑐(𝑡𝑐) (B2 subpopulation in liquid culture) 691 

where the initial conditions for each TTP sample were 𝐵1𝑐(𝑡𝑐 = 0) = 𝐵1𝑠(𝑡𝑡 = 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑝𝑜𝑖𝑛𝑡) and 692 

𝐵2𝑐(𝑡𝑐 = 0) = 𝐵21𝑠(𝑡𝑡 = 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑝𝑜𝑖𝑛𝑡) for the B1 and B2 subpopulations, respectively 693 

ℎ(𝑡𝑐) = 𝐵1𝑐(𝑡𝑐) × (𝑆𝑐𝑎𝑙𝑒𝐵𝐿 + (𝑆𝑐𝑎𝑙𝑒𝑆𝑆 − 𝑆𝑐𝑎𝑙𝑒𝐵𝐿) × (1 − 𝑒−𝑘𝑆×𝑡𝑡)) (TTP model) 694 

where the cumulative hazard (𝐻(𝑡𝑐) = ∫ ℎ(𝑡𝑐)𝑑𝑡
𝑡𝑐

0
) were used to calculate the survival (𝑆(𝑡𝑐) = 𝑒−𝐻(𝑡𝑐)) 695 

𝑝𝑐𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑡𝑒𝑑,𝑇𝑇𝑃 = 𝑝𝑐𝑜𝑛,𝑏𝑎𝑠𝑒 + 𝑘𝑐𝑜𝑛 × 𝑡𝑡 (model for contaminated TTP samples) 696 

𝑝𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒,𝑇𝑇𝑃 = 1 −
𝑝𝑚𝑎𝑥×(𝐵1𝑠(𝑡𝑡)+𝐵2𝑠(𝑡𝑡))

𝛾

𝐵50
𝛾

+(𝐵1𝑠(𝑡𝑡)+𝐵2𝑠(𝑡𝑡))
𝛾  (model for negatvie TTP samples) 697 

*Final parameter estimates of the MBL standalone model, the model predicting TTP based on MBL and the 698 

model predicting MBL based on TTP are available in Supplementary data S3. 699 

ak21 and kG were modelled as a single parameter in the model, bThe parameters for contaminated TTP samples 700 

were estimated on data from Tanzania, the other sites included time-constant probabilities of 0 for Malawi (fixed 701 

value, since contamination was not measured) and 0.336 (10.0% RSE) for Mozambique 702 

 on A
ugust 8, 2019 at S

T
 A

N
D

R
E

W
S

 U
N

IV
http://aac.asm

.org/
D

ow
nloaded from

 

http://aac.asm.org/


37 
 

Abbreviations: TTP; time-to-positivity, tt; time on treatment, MBL; molecular bacterial load, tc; time in liquid 703 

culture, pcontaminated,TTP; probability for a contaminated TTP sample, pnegative,TTP; probability for a negative TTP 704 

sample 705 

 706 
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