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Background: The demand for new anti-TB drugs is high, but development programmes are long and costly.
Consequently there is a need for new strategies capable of accelerating this process.

Objectives: To explore the power to find statistically significant drug effects using a model-based pharmacokinetic–
pharmacodynamic approach in comparison with the methods commonly used for analysing TB Phase IIa trials.

Methods: Phase IIa studies of four hypothetical anti-TB drugs (labelled A, B, C and D), each with a different mech-
anism of action, were simulated using the multistate TB pharmacometric (MTP) model. cfu data were simulated
over 14 days for patients taking once-daily monotherapy at four different doses per drug and a reference (10 mg/
kg rifampicin). The simulated data were analysed using t-test, ANOVA, mono- and bi-exponential models and a
pharmacokinetic–pharmacodynamic model approach (MTP model) to establish their respective power to find a
drug effect at the 5% significance level.

Results: For the pharmacokinetic–pharmacodynamic model approach, t-test, ANOVA, mono-exponential model and
bi-exponential model, the sample sizes needed to achieve 90% power were: 10, 30, 75, 20 and 30 (drug A); 30, 75, 245,
75 and 105 (drug B); 70, .1250, 315, .1250 and .1250 (drug C); and 30, 110, 710, 170 and 185 (drug D), respectively.

Conclusions: A model-based design and analysis using a pharmacokinetic–pharmacodynamic approach can re-
duce the number of patients required to determine a drug effect at least 2-fold compared with current method-
ologies. This could significantly accelerate early-phase TB drug development.

Introduction

The currently recommended treatment for drug-susceptible TB
consists of rifampicin, isoniazid, pyrazinamide and ethambutol.1

Under trial conditions the regimen provides a cure rate of approxi-
mately 95%.2–4 For MDR TB, however, cure rates are much lower5

and few drugs have been developed for use in these patients.
Although bedaquiline6 and delamanid7 have recently reached the
market through conditional approval there remains a paucity of
candidates in early clinical development. Thus, there is a pressing
need for the development of new agents to address this gap in our
therapeutic armamentarium.

The primary endpoint for Phase III TB trials is relapse-free cure
after treatment.2 The choice of Phase III combinations is guided
by the results of Phase IIb trials where drug combinations are
studied for the first 8 weeks of treatment.8 These late-stage clinical

trials are preceded by a Phase IIa methodology adapted to
TB when a novel drug is given to TB patients alone or in combin-
ation. This is designed to provide information on the bactericidal
effects9–11 and may aid in dose selection for Phase IIb.12

Phase IIa TB studies are usually monotherapy trials analysed
by comparing the changes in mycobacterial load in sputum for
7–14 days of treatment compared within or between dose arms.
A traditional approach used to analyse such trials is by
calculating the early bactericidal activity (EBA) defined as the fall in
log10 cfu/day.13 The EBA is non-model-based and is obtained using
only two timepoints, such as the first and last cfu measurements in
a patient. The mean EBA is compared between drugs and doses by
ANOVA or t-test.14 Conventionally, an empirical model approach is
also used which gives model-based estimates of the change in cfu

VC The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://
creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the
original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

1 of 9

J Antimicrob Chemother
doi:10.1093/jac/dkx129

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/82971451?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.oxfordjournals.org/


using simple empirical models including mono- and bi-exponential
regression models.15,16 These empirical models are simultaneously
fitted to all available data points from a patient. The model-based
estimates of change in cfu are compared between drugs and
doses. Phase IIa TB studies typically include 10–15 patients per
dose arm and many fail to demonstrate statistically significant
differences between drugs and between different doses of the
same drug.13,17 Model-based analysis using a pharmacokinetic–
pharmacodynamic approach has been shown to increase the
power of Phase II studies in indications such as HIV, acute stroke
and diabetes when compared with traditional statistical ana-
lyses.18,19 Thus, in this study, we adapt this approach to TB to evalu-
ate the power of a pharmacokinetic–pharmacodynamic approach
using the multistate TB pharmacometric (MTP) model20–22 in com-
parison with traditional statistical analyses including empirical
model approaches (mono- and bi-exponential regression) and tra-
ditional approaches (t-test and ANOVA).

Methods
To explore the impact of different analysis techniques we postulated four
drugs (labelled A, B, C and D) with different mechanisms of action, but simi-
lar pharmacokinetics. Firstly, individual cfu versus time data were simulated
using a previously described pharmacokinetic–pharmacodynamic model
for pre-clinical and clinical TB, the MTP model.20–22 As a second step, the
simulated data were analysed using the different approaches in order to
determine the statistical power for each respective approach for drugs A–D.

Study design
The Phase IIa study design included four study arms receiving 100, 200,
300 or 400 mg of the putative drugs and 10 mg/kg rifampicin (reference
arm) administered orally once daily as monotherapy for 14 consecutive
days. Subjects were divided equally across arms. We simulated sputum col-
lections at baseline and days 1–7, 9 and 14 after start of treatment23 be-
tween 8 p.m. and 8 a.m. with assumed sputum volumes of 10 mL. As
patients were assumed to have established infections, all treatments were
started 150 days after time of infection.22 Patients were assumed to weigh
56 kg and to be smear-positive, newly diagnosed adults with uncompli-
cated previously untreated pulmonary TB taking no other medications.

Phase IIa cfu simulations
The MTP model22 was linked to a pharmacokinetic model in addition to ex-
posure–response parameters and was used to simulate individual cfu data
over time for four different drugs (A, B, C and D). The MTP model parameters
described cfu without drug, the pharmacokinetic model parameters
described exposure and the exposure–response parameters described the
drug effect (Table 1).22 The MTP model described three mycobacterial
states including fast-, slow- and non-multiplying states with growth pre-
sent on the fast-multiplying state. The numbers in the different states at
any timepoint were defined by the following differential equations:

dF

dt
¼ kG � log

Bmax

F þ Sþ N

� �
� F þ kSF � S� kFS � F � kFN � F

dS

dt
¼ kFS � F þ kNS � N� kSN � S� kSF � S

dN

dt
¼ kSN � Sþ kFN � F � kNS � N

where

kFS ¼ kFSlin
� t

where F, S and N are the model-predicted bacterial numbers in fast-, slow-
and non-multiplying states, respectively. Rate constants (k) with two-letter
subscripts describe transfer rates between fast (F), slow (S) and non-
multiplying (N) states; the first letter indicates the transfer origin and the se-
cond letter the destination. The parameter kFSlin describes a time-
dependent transfer from fast- to slow-multiplying state. Time (t) is in days
after infection, kG is the fast-multiplying bacterial growth rate and Bmax is
the system carrying capacity.

We assumed that only the fast- and slow-multiplying bacteria are
detectable as cfu and those in the non-multiplying state are not. The
sputum sampling compartment method was included representing the
clinical sampling procedure performed over a given time interval. For
the sputum sampling compartment method, bacteria accumulate in a
sputum sample compartment (Sample) during the sampling interval
described by:

dSample

dt
¼ kprod � F þ Sð Þ

where

kprod ¼
Vsample

Dsample

where kprod is the sputum production rate.22 The parameter Vsample is the
sputum sample volume (mL) and Dsample is the sampling duration (h). The
cfu in the sample compartment was calculated by:

cfu ¼ Sample

Vsample

at the end of each sampling period to get cfu (mL#1).
The drug pharmacokinetic parameters for drugs A–D were set to the

same hypothetical values, reflecting a drug with one-compartment dispos-
ition with first-order absorption and rapid elimination (Table 1 and
Figure 1). The pharmacokinetics of rifampicin were generated using a previ-
ously developed population pharmacokinetic model.24

Rifampicin was assumed to inhibit growth of the fast-multiplying bac-
teria in addition to killing the slow- and non-multiplying bacteria.22 Drugs A
and B had the same mechanism of action as rifampicin, i.e. inhibition of
fast-multiplying bacterial growth and killing of the slow- and non-
multiplying bacteria (Figure 1). Drug C was defined as being able to kill
non-multiplying bacteria and drug D was assumed to kill slow-multiplying
bacteria. The different mechanisms of action for drugs A–D are shown in
Figure 1.

The different mechanisms of action were represented by three different
exposure–response models:

EFG ¼ 1� FGon=off

ESD ¼ SDk � Cp
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END ¼ NDk � Cp

where EFG, ESD and END are drug effects, namely inhibition of fast-
multiplying growth and killing of slow- and non-multiplying bacteria, re-
spectively. The parameter FGon/off is the fractional inhibition of growth of
the fast-multiplying state, where the drug effect is present once the drug
concentration (Cp) is above 0. The parameters SDk and NDk are the death
rates of the slow- and non-multiplying states, respectively. Different values
of the exposure–response parameters (FGon/off, SDk and NDk) were assumed
for drugs A–D (Table 1). Drug A was 20% more potent than rifampicin,22 ex-
cept for inhibition of fast-multiplying growth which was similar to rifampi-
cin, i.e. 100%. Drug B was 50% less potent than drug A. Drug C had the
same potency as drug A for killing of the non-multiplying state. Drug D had
the same potency as drug A for killing of slow-multiplying bacteria. The
drug effects were included in the differential equations for the MTP model
as follows:

dF

dt
¼ kG � log

Bmax

F þ Sþ N

� �
� EFG � F þ kSF � S� kFS � F � kFN � F

dS

dt
¼ kFS � F þ kNS � N� kSN � S� kSF � S� ESD � S

dN

dt
¼ kSN � Sþ kFN � F � kNS � N� END � N

Power analysis
A large cfu dataset was simulated and subsets of the dataset were
sampled repeatedly at several sample sizes. Each subset was analysed
using five different methods: pharmacokinetic–pharmacodynamic model

Table 1. Pharmacokinetic and MTP model parameters used in the simulations of cfu versus time after different doses of drugs A, B, C and D for differ-
ent study sample sizes (1000 replicates per sample size)

Parameter Description Value Interindividual variability (%CV)

MTP model parameters

kG (days#1) fast-multiplying bacterial growth rate 0.206 —

kFN (days#1) transfer rate from fast- to non-multiplying state 8.98 % 10#7 —

kSN (days#1) transfer rate from slow- to non-multiplying state 0.186 —

kSF (days#1) transfer rate from slow- to fast-multiplying state 0.0145 —

kNS (days#1) transfer rate from non- to fast-multiplying state 0.00123 —

kFSlin (days#2) time-dependent transfer rate from fast- to slow-multiplying state 0.00166 —

F0 (mL#1) initial bacterial number of fast-multiplying state 4.11 —

S0 (mL#1) initial number of slow-multiplying state 9770 —

Bmax (mL#1) system carrying capacity per mL of sputum 2.61 % 109 152

Drug pharmacokinetic

parametersa

CL/F (L h#1) oral clearance 8.00 30.7

V/F (L) apparent volume of distribution 60.0 —

ka (h#1) absorption rate constant 1.00 —

Exposure–response

parameters

FGon/off fractional inhibition of growth of fast-multiplying state drug A 1.00 —

drug B 0.50 —

drug C — —

drug D — —

SDk (L mg#1 days#1) second-order slow-multiplying state death rate drug A 0.240 60

drug B 0.120 60

drug C — —

drug D 0.240 60

NDk (L mg#1 days#1) second-order non-multiplying state death rate drug A 0.127 75

drug B 0.064 75

drug C 0.127 75

drug D — —

Residual error parameters

e (CV%) additive residual error on log scale 110 —

erepl (CV%) additive residual error on log scale 23.1 —

CV, coefficient of variation.
aThe pharmacokinetic parameters were the same for all four different drugs.
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approach (MTP model), traditional approaches (t-test and ANOVA) and em-
pirical model approaches (mono- and bi-exponential regression). The pro-
portion of the subsets at each sample size where a drug effect was
detected was defined as the power. Statistical significance was accepted at
the 5% significance level. An additional criterion for clinical significance was
included for each approach (outlined below). The approaches are described
briefly below. For a detailed description see Appendix S1 (available as
Supplementary data at JAC Online).

Pharmacokinetic–pharmacodynamic model approach
using the MTP model
For the pharmacokinetic–pharmacodynamic model approach using the MTP
model, the Monte Carlo mapped power (MCMP) method was applied.25 For
each drug a reduced model without drug effect corresponded to H0 and a full
model including drug effect corresponded to H1. The clinical significance criter-
ion was included as a constraint on the exposure–response parameters SDk

and NDk; only positive values were allowed for these parameters. Negative val-
ues would mean that the drug directly increases the bacterial number.

Empirical model approaches
For the empirical approaches the power to find a drug effect was obtained
using mono- and bi-exponential regression models applied to the highest
(400 mg) dose group. Both models assumed that cfu changed over time
and in order to test if these changes were statistically significant the mono-

and bi-exponential regression models were compared with a reduced em-
pirical model assuming no change in cfu over time. Testing was done using
an F-test under the null hypothesis that the mono- or bi-exponential model
did not provide a better fit than the reduced empirical model (H0). The clin-
ical significance criterion was implemented to only allow declines in cfu.

Traditional statistical approaches
For the traditional approaches using t-test or ANOVA, the EBA between days
0 and 14 (EBA0–14) was used as the test statistic. The power to detect a drug
effect was determined using a two-sided t-test under the null hypothesis
that the mean EBA0–14 from patients in the highest dose group (400 mg) did
not differ from 0 (H0). A clinical significance criterion was introduced where
only positive values for EBA0–14 contributed to the power since negative
EBA0–14s represent drugs that increase cfu over time, which was considered
a clinically irrelevant drug effect. The power was also calculated for finding
differences in EBA0–14 between study arms using ANOVA under the null hy-
pothesis that there was no difference in EBA0–14 between study arms (H0).

Software
Simulations were performed in NONMEM [version 7.3; Icon Development
Solutions (http://www.iconplc.com/innovation/nonmem/), Ellicott City, MD,
USA]26 using MCMP within PsN (version 4.5.2; Department of
Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden).27,28

Power calculations for the traditional approaches were performed in R

Abs kG × log

SD
k 

× 
C p

kFS = kFSlin
 × t

N
D

k 
× 

C p

1 – FGon/off×
F + S + N

Bmax

kSF

kSN

kFN

ka

kNS

k pro
d

k
prod

DOSE

Pharmacokinetics Pharmacodynamics

A, B

A, B, C

CL/F

V/F

A, B, D

Sample

F S

N
Cp

Figure 1. Schematic representation of the MTP model linked to a pharmacokinetic model. The four drugs were assumed to have identical pharmaco-
kinetics, but different mechanisms of action, indicated by the broken lines connecting the drug plasma concentration (Cp) to either killing of slow-
multiplying state (S) or non-multiplying state (N) bacteria or inhibition of the growth rate (kG) of bacteria in the fast-multiplying state (F). The broken
lines indicate drug effect on each of the three possible effect sites. The letter of the drug (A–D) is shown on the broken line for the mechanism of ac-
tion included for each hypothetical drug. Abs, absorption compartment; ka, absorption rate constant; CL/F, apparent oral clearance; V/F, apparent vol-
ume of distribution; Bmax, system carrying capacity; kFS, time-dependent linear rate parameter describing transfer from fast- to slow-multiplying
state; kSF, transfer rate between slow- and fast-multiplying state; kFN, transfer rate between fast- and non-multiplying state; kSN, transfer rate be-
tween slow- and non-multiplying state; kNS, transfer rate between non- and slow-multiplying state; kprod, sputum production rate constant; Sample,
sputum sample compartment; FGon/off, on/off-effect as inhibition of fast-multiplying bacterial growth; SDk, second-order slow-multiplying death rate;
NDk, non-multiplying death rate.
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Figure 2. Typical simulated log10 cfu change from baseline versus time after start of treatment of four hypothetical anti-TB drugs (drugs A–D) follow-
ing 100, 200, 300 and 400 mg (black continuous lines) and 10 mg/kg rifampicin (grey broken lines) given orally once daily (OD).
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[version 3.1.1; R Foundation for Statistical Computing (http://www.R-pro
ject.org), Vienna, Austria]. Power calculations for the empirical approaches
were performed using the nls-package within R.

Results

Simulated typical cfu versus time after treatment with different
doses of drugs A–D in monotherapy are shown in Figure 2. The
required sample sizes to reach 90% power for finding a statistically
significant drug effect (P�0.05) for treatment with drugs A–D
using different analysis approaches, including a pharmacokinetic–
pharmacodynamic model approach (MTP model), empirical
approaches (mono- and bi-exponential regression) and traditional
approaches (t-test and ANOVA), are shown in Table 2 with corres-
ponding power curves in Figure 3.

The required sample size to achieve 90% power for finding a
statistically significant drug effect for Phase IIa TB trials was at
least two times lower for the pharmacokinetic–pharmacodynamic
model approach (MTP model) in comparison with other tested
approaches for all drugs. The ANOVA approach required higher
sample sizes for all drugs compared with all other analyses except
drug C, where all other analyses except the ANOVA and pharmaco-
kinetic–pharmacodynamic approaches failed to reach 90% power.
Mono-exponential regression required lower sample sizes com-
pared with bi-exponential regression for all drugs except drug C
where all approaches except the pharmacokinetic–pharmacody-
namic model approach and the ANOVA approach failed to reach
90% power at the studied sample size range. The t-test required
lower sample sizes than the empirical approaches for drug D whilst
it performed similarly to bi-exponential regression for drug A and
similarly to mono-exponential regression for drug B.

Discussion

This work shows the advantage of adopting a pharmacokinetic–
pharmacodynamic model approach when designing and analysing
Phase IIa TB trials. For all the hypothetical drugs studied here the
sample size required to achieve a significant result at 90% power
was smaller using the MTP model than all of the other approaches

investigated. The reasons for this sample size reduction are that a
pharmacokinetic–pharmacodynamic analysis includes all longitu-
dinal data simultaneously, including data from all dose groups.18,19

The empirical approaches (mono- and bi-exponential regression)
are less informative as they include longitudinal data only from the
highest dose group. The traditional approaches (t-test and ANOVA)
only include the difference between cfu at day 0 and day 14.

Phase IIa trials within TB typically include 10–15 patients per
arm;13 hence the five arms used in the current study design cor-
respond to a total study size of 50–75 patients. For drugs A–D,
most analysis methods except the pharmacokinetic–pharmaco-
dynamic model approach failed to attain 90% power at total
sample sizes of 50–75 patients, in line with the known difficulty
of finding statistically significant drug effects for Phase IIa TB tri-
als29 and the even more difficult to detect differences between
dose arms (i.e. exposure–response) which is assessed using
ANOVA. Defining exposure–response is crucial for Phase IIa in
general, but is not feasible for TB when using traditional methods
and including 10–15 patients per arm. The pharmacokinetic–
pharmacodynamic model approach also assesses differences
between arms by estimating exposure–response parameters. By
using the MTP model, the sample size needed to reach 90%
power was reduced several-fold (Table 2) compared with the
other approaches studied, enabling detection of exposure–re-
sponse when including as few as 10–15 patients per arm. This
allows for more robust dose selection for future trials based on
exposure–response defined in Phase IIa.

The empirical approaches (mono- and bi-exponential regression)
are expected to have higher power than traditional approaches
since the empirical approaches include more data. However, when
comparing the empirical approaches with the t-test approach, our
results do not favour one over the other. Regression-based methods
are expected to have higher power if the tested model fits the data
well. In contrast, low power is likely to be seen for a model which is
unable to describe the data. The cause of the unexpectedly low
powers for the empirical analyses seen in this work is unknown, but
our analysis shows that the relative power of empirical versus trad-
itional approaches appears drug dependent.

Table 2. Total sample size required for finding a drug effect at 90% power and 5% significance level for drugs A, B, C and D using a pharmacokinetic–
pharmacodynamic model approach with the MTP model, traditional statistical approaches and empirical model approaches

Analysis

Total sample size (ratio compared with pharmacokinetic–pharmacodynamic model approach)

drug A drug B drug C drug D

Pharmacokinetic–pharmacodynamic

model approach

MTP model 10 (—) 30 (—) 70 (—) 30 (—)

Traditional statistical approaches

t-test 30 (3.0) 75 (2.5) .1250 (.17.9)a 110 (3.7)

ANOVA 75 (7.5) 245 (8.2) 315 (4.5) 710 (23.7)

Empirical model approaches

mono-exponential model 20 (2.0) 75 (2.5) .1250 (.17.9)a 170 (5.7)

bi-exponential model 30 (3.0) 105 (3.5) .1250 (.17.9)a 185 (6.2)

a90% power was not reached at the maximal sample size of 1250.
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The ANOVA approach had lower power than the t-test ap-
proach except for drug C (increased killing of non-multiplying bac-
teria) where ANOVA had higher power than the t-test (Figure 3c).
The reason is that cfu increased in the highest dose group for
day 14 compared with day 0 (Figure 2c) which was not considered
clinically significant for the t-test analysis and therefore did not
contribute to the power. The ANOVA approach also had higher

power than the mono- and bi-exponential analyses due to the cri-
terion for clinical significance only allowing a decrease in cfu. The
criterion for clinical significance was implemented as constraints
on the rate constant parameters for bacterial elimination to only
allow decrease in cfu which stopped the mono- or bi-exponential
models from describing the increases in cfu well, resulting in low
power. The ANOVA approach only looks at statistical significance
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Figure 3. Predicted power at 5% significance level versus total sample size for four hypothetical anti-TB drugs (drugs A–D) using a pharmacokinetic–
pharmacodynamic model approach (MTP model), mono-exponential regression, t-test, ANOVA and bi-exponential regression.
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and not clinical significance, resulting in higher power for drug C.
Exposure–response parameters were also constrained to be posi-
tive (i.e. only allowed to increase bacterial killing) for the pharma-
cokinetic–pharmacodynamic model approach, but the
pharmacokinetic–pharmacodynamic model approach included
disease-specific parameters governing bacterial growth (kG and
Bmax) which could allow an increase in cfu as an indirect conse-
quence of drug exposure. The Bmax parameter acts to constrain
growth at high bacterial densities, resulting in stationary phase
growth. Drugs that kill bacteria reduce the bacterial density, result-
ing in growth proportional to the reduction in bacterial density,
which caused regrowth for drug C (Figure 2c). It was only possible
using a pharmacokinetic–pharmacodynamic approach to support
statistically and clinically significant exposure–response relation-
ships despite regrowth since this approach includes disease-
specific parameters governing growth. If monotherapy data from
drugs that increase cfu over time (due to regrowth as seen for drug
C) are analysed using traditional or empirical approaches, this will
lead to the conclusion that the drug is clinically insignificant, al-
though this might not always be the case according to our results.
It should be noted that the risk of this happening is low for drugs
that either cause substantial inhibition of growth such as rifampi-
cin19 or for drugs that strongly kill growing bacteria, effectively pre-
venting regrowth. This finding is interesting in the context of the
Phase IIa trial of SQ109 where daily monotherapy doses of 75 mg
resulted in a greater decline in cfu over 14 days than doses of 150
and 300 mg.10 If SQ109 kills only the non-multiplying bacteria it
would not be expected that the highest dose necessarily results in
the greatest reduction in cfu over 14 days due to the regrowth phe-
nomenon seen for drug C (Figure 3c). Although it would mean that
if SQ109 acts to kill non-multiplying bacteria it would most likely
enhance decline of cfu in combination with other drug(s) able to in-
hibit growth or otherwise prevent regrowth. Interestingly, SQ109
was combined with rifampicin in Phase IIa10 and an enhanced de-
cline in cfu was seen when rifampicin was combined with 150 mg
of SQ109 compared with rifampicin monotherapy. We speculate
that if the Phase IIa trial of SQ109 had been designed and ana-
lysed using a pharmacokinetic–pharmacodynamic approach,
SQ109 might have been interpreted as a drug that only kills non-
multiplying bacteria. If this speculation is true SQ109 has potential
for treating TB efficiently. But further refinement of the dose of
SQ109 and choice of companion drugs are required as the reported
efficacy after 12 weeks of treatment with 300 mg SQ109 com-
bined with 10 or 20 mg/kg rifampicin, 5 mg/kg isoniazid and
25 mg/kg pyrazinamide was not better than the standard regimen
consisting of 10 mg/kg rifampicin, 5 mg/kg isoniazid, 25 mg/kg pyr-
azinamide and 15–20 mg/kg ethambutol.30

In conclusion, a pharmacokinetic–pharmacodynamic model
approach using the MTP model20–22 was able to reduce the sample
sizes required to reach 90% power to find statistically significant
drug effects for Phase IIa TB trials compared with traditional and
empirical approaches. This has the potential to make early TB drug
development less expensive and more robust as fewer patients
are required to show a statistically significant drug effect.
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